Lithium battery liquid-cooled thermal management system of stepped-channel based on lightweight

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY
Long Zhou, Shengnan Li, Ankur Jain, Guoqiang Chen, Desui Guo, Jincan Kan, Yong Zhao
{"title":"Lithium battery liquid-cooled thermal management system of stepped-channel based on lightweight","authors":"Long Zhou, Shengnan Li, Ankur Jain, Guoqiang Chen, Desui Guo, Jincan Kan, Yong Zhao","doi":"10.1115/1.4063848","DOIUrl":null,"url":null,"abstract":"Abstract This study proposes a stepped channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the TCS is investigated through using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063848","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study proposes a stepped channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the TCS is investigated through using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.
基于轻量化的阶梯通道锂电池液冷热管理系统
摘要提出了一种基于轻量化的阶梯通道液冷电池热管理系统。通过数值模拟研究了通道宽度、单元间横向间距、接触高度和接触角对TCS效能的影响。采用权重敏感因子评价TCS重量对电池组最高温度的影响。研究结果表明,通道宽度的影响最为关键,其次是细胞间横向间距和接触角,而接触高度的影响最小。采用正交试验法研究了影响电池组热平衡性能的4个参数:通道数、挡板数、挡板角度和冷却剂进口速度。结果表明:通道数量和挡板角度对电池组热平衡有显著影响,而冷却剂进口速度和挡板数量对电池组热性能影响不大;在此基础上,提出了一种改进的TCS设计方案,其重量减少了54.08%,而Tmax仅增加了2.52 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信