{"title":"Effect of faying surface condition on the dynamic response of bolted structures","authors":"Michael Vaccaro Jr, Arash Zaghi","doi":"10.1016/j.jcsr.2024.109099","DOIUrl":"10.1016/j.jcsr.2024.109099","url":null,"abstract":"<div><div>Bolted connections significantly influence the dynamic properties of built-up structures due to the nonlinear frictional behavior of the faying surfaces. These effects are influenced by bolt preload, faying surface roughness, interface condition, and excitation magnitude. This experimental study investigates these parameters' effects on the modal frequencies and damping characteristics of a jointed beam specimen. Three specimens with double-lap joints and different interface conditions (clean-mill, sandblasted, epoxied, and a monolithic specimen) were impact-hammer tested at three impact magnitudes and two bolt preloads. The first eight flexural modes and two longitudinal modes were analyzed in the frequency domain (up to 4000 Hz). The findings indicate that bolted joints reduce system stiffness, but adding epoxy to the joint mitigates this effect. A lower bolt preload was found to decrease the natural frequencies of steel-steel interface specimens, while minimal change was observed in the epoxied specimen. Increased modal excitation generally reduced the measured natural frequencies. Changes in damping were found to be mode-dependent, with increased modal excitation reducing damping in lower flexural modes but increasing damping in higher-order flexural modes.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109099"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihua Chen , Yan Yang , Xiangyu Yan , Tianzhu Zhang , Yuanhao Wen , Mofan Zhang
{"title":"Experimental, numerical and theoretical study on the steel-grid-shear-wall connected to frame-beams only","authors":"Zhihua Chen , Yan Yang , Xiangyu Yan , Tianzhu Zhang , Yuanhao Wen , Mofan Zhang","doi":"10.1016/j.jcsr.2024.109091","DOIUrl":"10.1016/j.jcsr.2024.109091","url":null,"abstract":"<div><div>A novel steel grid shear wall structure connected to frame beams only (SGSW-BO) was proposed to reduce the welding work of the stiffened steel-plate shear wall, fabricate structural component standardly, and facilitate seismic retrofitting. Two 1:2 scaled specimens were fabricated and tested under horizontal cyclic load to study the mechanical properties of this novel lateral resisting system. The finite element model was established using ABAQUS and parametric studies were conducted to investigate the effects of the opening ratio, the sectional dimensions of the T-shaped steel grid members and vertical boundary elements on the lateral resistance performances of the structure. Then the lateral bearing capacity of the SGSW-BO was derived and verified. The results showed that the SGSW-BO exhibited good hysteresis performance, and the plastic development and energy dissipation were mainly provided by the T-shaped steel shear wall. The finite element model could simulate and predict the mechanical performances of the SGSW-BO accurately, and the following parametric analyses were carried out based on the finite element model. It could be found from the parametric analyses that the lateral bearing capacity and initial stiffness of the structure changed dramatically with the opening ratio, the flange width and thickness of T-shaped steel elements, but the stiffness of vertical boundary element would not affect the hysteresis performance significantly. Finally, the calculation method of the lateral bearing capacity of the SGSW-BO was derived and could predict the lateral bearing capacity accurately.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109091"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model and uncertainty of compressive load capacity of steel equal angle connected by one leg","authors":"Xin Zhang, Qiang Xie, Hainan Wu","doi":"10.1016/j.jcsr.2024.109088","DOIUrl":"10.1016/j.jcsr.2024.109088","url":null,"abstract":"<div><div>Steel angle often connects with single leg for construction convenience, which introduces uncertainties in load eccentricity and restraint, making capacity complex to calculate precisely. This research aims to establish a stability coefficient distribution pattern applicable for a wide range of section dimensions, and investigate the effect of structural uncertainty on it. Experiments were conducted to validate the FE models. Subsequently, stability coefficients under commonly used section dimensions were obtained, and influencing parameters were evaluated. Sensitivity and uncertainty analyses were employed to study the impact of structural uncertainty. It was found that the stability coefficients of steel angle connected by one leg form a distribution band, for which a mathematical model was developed. Connection plate dimensions had significant influence on the stability coefficient. Considering structural uncertainty, yield strength and element dimensions had notable sensitivity. And the stability coefficients of the steel angle followed a normal distribution with negative skewness. Therefore, the influence of structural uncertainties cannot be underestimated in the analysis of capacity, and this study provides a reference for their quantitative assessment.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109088"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jincheng Jiang , Zhihua Chen , Yang Liu , Xingwang Liu , Guannan Lu , Xinyu Lin
{"title":"Experimental and numerical investigation on the seismic behavior of a novel bolted inter-module connection","authors":"Jincheng Jiang , Zhihua Chen , Yang Liu , Xingwang Liu , Guannan Lu , Xinyu Lin","doi":"10.1016/j.jcsr.2024.109101","DOIUrl":"10.1016/j.jcsr.2024.109101","url":null,"abstract":"<div><div>Modular steel buildings (MSBs) are innovative structures comprising complete components. The design of inter-module connections (IMCs) significantly influences onsite assembly convenience and overall structural performance. IMC designs often incorporate openings in corner fittings' side plates for installation ease, though these may compromise structural integrity. Existing research reveals three main gaps: limited focus on IMC performance under combined loading, inadequate study of openings' impact on seismic resilience, and absence of a restoring force model for unit connections. This study introduces a novel bolted IMC design featuring variable opening sizes. Seismic performance under combined loading was evaluated via experiments and finite element analysis (FEA), leading to a developed restoring force model. Four specimens underwent horizontal quasi-static loading tests under axial pressure, revealing failure modes, hysteresis curves, stiffness degradation, and energy dissipation. A detailed FE model was validated with experimental data, and parametric analysis varied axial compression ratio, bolt sizes, and end plate thickness. Results indicate the new bolted IMCs exhibit satisfactory seismic performance. However, openings significantly reduce seismic resistance, with increased box length notably enhancing it. A restoring force model (RFM) derived from skeleton curves, stiffness degradation, and hysteresis rules correlates well with experimental hysteresis curves, effectively capturing IMCs' seismic response. This model serves as a foundation for designing modular structural systems.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109101"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Cheng , Xianglin Yu , Yongjiu Shi , YiuKwong Pang
{"title":"Experimental and numerical investigation of fire resistance of G550 galvanized steel-concrete slabs","authors":"Yun Cheng , Xianglin Yu , Yongjiu Shi , YiuKwong Pang","doi":"10.1016/j.jcsr.2024.109092","DOIUrl":"10.1016/j.jcsr.2024.109092","url":null,"abstract":"<div><div>This paper investigates the increasing demand for improved fire performance of composite floor systems in high-rise buildings by constructing a new type of composite slab, which is composed of concrete and closed profiled steel deck fabricated with G550 galvanized steel. Six full-scale standard fire tests of composite slabs are conducted to understand the thermal-mechanical response of the new composite slab. The results reveal that the fire duration of all the novel composite slabs exceeds 60 min, demonstrating significantly improved fire performance comparing to a conventional slab. The failure mode for all tested composite slabs is flexural failure, with limited end slip that indicates a good preservation of composite action during fire exposure. Based on the experimental results, numerical model is established and validated through the comparison of temperature and deformation data. A series of parametric analyses are carried out numerically, where overall slab depth, deck depth, supported span and uniform loads are identified as the dominant effects on the fire resistance. The results indicate that the existing design methods specified in the current standards are not fully applicable to the newly proposed composite slab. Simplified calculating methods for insulation-based and bearing capacity-based fire resistance are suggested.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109092"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youcai Xiang , Li Zhu , Bin Jia , Lei Zhao , Naixian Li , Youkai Gu , Peng Ren
{"title":"Sensitivity analysis and failure prediction of X80 pipeline under transverse landslide","authors":"Youcai Xiang , Li Zhu , Bin Jia , Lei Zhao , Naixian Li , Youkai Gu , Peng Ren","doi":"10.1016/j.jcsr.2024.109090","DOIUrl":"10.1016/j.jcsr.2024.109090","url":null,"abstract":"<div><div>To investigate the mechanical response of X80 pipelines under lateral landslide conditions, finite element simulations of X80 pipeline under 375 lateral landslide conditions are conducted in this paper to examine mechanical behavior under varying pipe diameters and wall thicknesses, and landslide width and displacement on pipeline strain is assessed. The results indicate that under the influence of lateral landslides, The pipeline strain is predominantly induced by the bending moment, with axial strain being the most significant, constituting over 95 % of the total strain. The peak strain is primarily concentrated in the middle section of the pipeline's leading span. Based on extensive numerical simulation data, a grey relational analysis was conducted, revealing that the primary factors influencing the maximum axial strain in pipelines, in descending order of significance, are landslide displacement, landslide width, pipeline diameter, and pipeline wall thickness. Furthermore, to predict the safety of X80 pipelines under lateral landslides, a BP neural network prediction model and a fitting formula are developed based on the four influencing factors. Both the model and the formula were validated to accurately predict the maximum axial strain of X80 pipelines affected by lateral landslides. Moreover, a failure assessment method for X80 pipelines under lateral landslide conditions was established using the strain failure criterion. Results indicate that the prediction errors of the neural network model and the formula, compared to simulation outcomes, are within 10 %, the high accuracy of the failure prediction results is similarly demonstrated.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109090"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of cyclic loading and high-temperature cooling on mechanical properties of Q450 weathering steel","authors":"Chuntao Zhang , Linwei Cui , Zhisong Wang","doi":"10.1016/j.jcsr.2024.109084","DOIUrl":"10.1016/j.jcsr.2024.109084","url":null,"abstract":"<div><div>The investigation of the mechanical properties of steel structures after cyclic loadings such as earthquakes, wind vibrations, and high-temperature cooling helps to study the stability of steel structures in extremely complex environments. Hence, this study investigates the mechanical characteristics of cyclically loaded Q450 weathering steel after high-temperature cooling. Before the tensile test, Q450 weathering steel was previously damaged by cyclic loading, and then the Q450 weathering steel specimens with different cyclic loading damages were heated and cooled. Based on the test results, the effect of the sequence of cyclic loading and high-temperature cooling on the mechanical characteristics of steel was also discussed. The failure model of cyclically loaded Q450 weathering steel after high-temperature cooling was observed. The residual mechanical characteristics of Q450 weathering steel after being subjected to extreme environments were discussed by comparing the mechanical characteristics of undamaged steel specimens. The test findings reveal that the cyclic loading pre-damage, heating temperature, and cooling method greatly impact the important parameters of Q450 weathering steel, such as strength, elastic modulus, and ductility. Comparing the sequence of cyclic loading, heating and cooling, Q450 weathering steel with cyclic loading pre-damage of 95 % was considerably influenced by the sequence of extreme environments. In contrast, the influence of the extreme environmental sequence was not significant when the pre-damage was 50 % and 75 %. In addition, the modulus of elasticity is indifferent to the extreme environmental sequences, whereas the elongation displays complicated change patterns under varied degrees of pre-damage. Finally, the stress-strain relationship considering the interactive effects of cyclic loading damage, temperature, and cooling method was proposed using a multi-component numerical model.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109084"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on a single-sided resilient composite beam–column joint","authors":"Hao Wen , Yulong Feng , Yuhang Wang , Xiaogang Huang","doi":"10.1016/j.jcsr.2024.109102","DOIUrl":"10.1016/j.jcsr.2024.109102","url":null,"abstract":"<div><div>This paper presents an experimental study on a single-sided resilient composite beam–column joint, in which a nonreplaceable concrete slab and connection plate and a replaceable buckling-restrained cover plate (BRCP) are installed at the top and bottom flanges, respectively. The seismic performance and replaceability of the proposed joint were investigated considering the influence of the concrete slab. One specimen was cyclically loaded under 2 % rotation, and then the damaged core plate of the BRCP was replaced to form a new specimen that was cyclically loaded under 4 % rotation. The results showed that the neutral axis was shifted upward to the top flange, which made the damage concentrate in the core plate, and only minor damage occurred to the connection plate and concrete slab under 2 % rotation. The hysteresis curve after replacement was almost the same as that before replacement under 2 % rotation and showed full and stable loops without decrease in load capacity under 4 % rotation, implying good seismic performance and replaceability. In addition, the proposed joint was compared with a bare steel joint to examine the effects of concrete slabs. Further, a numerical model of the specimen was developed and verified by comparison with the test results to better understand the test and study the influence of connection plates. Finally, the formulas for the yield moment and initial stiffness of the joint were derived and compared with test results to verify the accuracy of the formulas. The influence of the reduction in core plate area on the joint stiffness and neutral axis position was discussed using the formulas.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109102"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang Chen , Hamid R. Valipour , Mark A. Bradford , Xinpei Liu , Donghong Zhang
{"title":"Computational analysis of wildland fire resistance for transmission line tower","authors":"Chang Chen , Hamid R. Valipour , Mark A. Bradford , Xinpei Liu , Donghong Zhang","doi":"10.1016/j.jcsr.2024.109097","DOIUrl":"10.1016/j.jcsr.2024.109097","url":null,"abstract":"<div><div>Finite element (FE) analysis of the transmission towers under a fire event and the accompanying wind is presented. Several key aspects (including temperature-dependent non-linear material properties, geometric non-linearity, member eccentricity due to the single-leg bolted connection, and the temperature-dependent connection behaviour in both the axial and the rotational directions) are considered. A quasi-static analysis is also employed in the FE model using the explicit solver available in Abaqus. The member temperature variation during a realistic fire event is derived analytically based on the fire intensity and the resultant vertical gas temperature distribution so that the effect of the realistic wildland fire can be input as a member temperature profile. First, fire design guidance in terms of the most critical heating and wind pattern, as well as the effect of fire-affected heights are provided based on the case study results. Then, further fire analysis is carried out to investigate the most critical fire scenario and to evaluate the vulnerability of the tower during a realistic fire event. Lastly, an evaluation of a commonly used spray-on thermal insulation and its effectiveness in reducing the member temperature and preserving ultimate strength during a catastrophic wildland fire event are presented. The FE simulations revealed that a 45-degree wind associated with partial side heating leads to a more critical degradation of the overall strength, whereas the effect of fire height is less obvious. In terms of the fire scenario, a longer fire duration associated with a slower wind is more critical for the fire resistance/rating.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109097"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and shock isolation performances of two-layered ring-spring meta-isolation systems","authors":"Dongyu Shi , Jue Han , Hualin Fan","doi":"10.1016/j.jcsr.2024.109098","DOIUrl":"10.1016/j.jcsr.2024.109098","url":null,"abstract":"<div><div>Two-layered ring-spring-resonator (RSR) based meta-isolation system (RSR-M) has been developed to improve shock isolation effect. In the numerical calculations, shock acceleration ratio (SAR), shock displacement ratio (SDR) and relative displacement ratio (RDR) were introduced to evaluate the shock isolation performances of the conventional isolation system (CON) and the RSR-M, considering the effects of the excitation amplitude, the weight of the middle mass block and the stiffness of the lower isolators. The results demonstrate that the SAR of the RSR-M is always smaller than that of the CON, and the SDR of the RSR-M is first larger than that of CON in the shock amplification region and then smaller in the isolation region. The weight of middle mass blocks has little influence on the isolation performance of the RSR-M because of the softening behavior of the isolators. Finally, shock isolation experiments were also carried out to measure the damping ratios of the selected wire rope isolators and further analyze the isolation performance of the RSR-Ms. In general, meta-isolation system provides a new reference and idea for the design of the isolation system of engineering structures in some sense.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109098"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}