Journal of Computational and Graphical Statistics最新文献

筛选
英文 中文
MCMC for Bayesian nonparametric mixture modeling under differential privacy 差异隐私下贝叶斯非参数混合建模的 MCMC
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-07 DOI: 10.1080/10618600.2024.2410911
Mario Beraha, Stefano Favaro, Vinayak Rao
{"title":"MCMC for Bayesian nonparametric mixture modeling under differential privacy","authors":"Mario Beraha, Stefano Favaro, Vinayak Rao","doi":"10.1080/10618600.2024.2410911","DOIUrl":"https://doi.org/10.1080/10618600.2024.2410911","url":null,"abstract":"Estimating the probability density of a population while preserving the privacy of individuals in that population is an important and challenging problem that has received considerable attention in...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"103 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network embedding-based directed community detection with unknown community number 基于网络嵌入的定向群落检测与未知群落编号
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-04 DOI: 10.1080/10618600.2024.2409789
Qingzhao Zhang, Jinlong Zhou, Mingyang Ren
{"title":"Network embedding-based directed community detection with unknown community number","authors":"Qingzhao Zhang, Jinlong Zhou, Mingyang Ren","doi":"10.1080/10618600.2024.2409789","DOIUrl":"https://doi.org/10.1080/10618600.2024.2409789","url":null,"abstract":"Community detection of network analysis plays an important role in numerous application areas, in which estimating the number of communities is a fundamental issue. However, many existing methods f...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grid Point Approximation for Distributed Nonparametric Smoothing and Prediction 用于分布式非参数平滑和预测的网格点近似法
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-03 DOI: 10.1080/10618600.2024.2409817
Yuan Gao, Rui Pan, Feng Li, Riquan Zhang, Hansheng Wang
{"title":"Grid Point Approximation for Distributed Nonparametric Smoothing and Prediction","authors":"Yuan Gao, Rui Pan, Feng Li, Riquan Zhang, Hansheng Wang","doi":"10.1080/10618600.2024.2409817","DOIUrl":"https://doi.org/10.1080/10618600.2024.2409817","url":null,"abstract":"Kernel smoothing is a widely used nonparametric method in modern statistical analysis. The problem of efficiently conducting kernel smoothing for a massive dataset on a distributed system is a prob...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"11 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions FAStEN:高维函数回归中特征选择和估计的高效自适应方法
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-27 DOI: 10.1080/10618600.2024.2407464
Tobia Boschi, Lorenzo Testa, Francesca Chiaromonte, Matthew Reimherr
{"title":"FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions","authors":"Tobia Boschi, Lorenzo Testa, Francesca Chiaromonte, Matthew Reimherr","doi":"10.1080/10618600.2024.2407464","DOIUrl":"https://doi.org/10.1080/10618600.2024.2407464","url":null,"abstract":"Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"37 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate moment least-squares variance estimators for reversible Markov chains 可逆马尔可夫链的多元矩最小二乘方差估计器
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-27 DOI: 10.1080/10618600.2024.2407458
Hyebin Song, Stephen Berg
{"title":"Multivariate moment least-squares variance estimators for reversible Markov chains","authors":"Hyebin Song, Stephen Berg","doi":"10.1080/10618600.2024.2407458","DOIUrl":"https://doi.org/10.1080/10618600.2024.2407458","url":null,"abstract":"Markov chain Monte Carlo (MCMC) is a commonly used method for approximating expectations with respect to probability distributions. Uncertainty assessment for MCMC estimators is essential in practi...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"10 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariance Assisted Multivariate Penalized Additive Regression (CoMPAdRe) 协方差辅助多元惩罚加性回归(CoMPAdRe)
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-27 DOI: 10.1080/10618600.2024.2407453
Neel Desai, Veerabhadran Baladandayuthapani, Russell T. Shinohara, Jeffrey S. Morris
{"title":"Covariance Assisted Multivariate Penalized Additive Regression (CoMPAdRe)","authors":"Neel Desai, Veerabhadran Baladandayuthapani, Russell T. Shinohara, Jeffrey S. Morris","doi":"10.1080/10618600.2024.2407453","DOIUrl":"https://doi.org/10.1080/10618600.2024.2407453","url":null,"abstract":"We propose a new method for the simultaneous selection and estimation of multivariate sparse additive models with correlated errors. Our method called Covariance Assisted Multivariate Penalized Add...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"66 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Latent Space Model for Weighted Keyword Co-occurrence Networks with Applications in Knowledge Discovery in Statistics 加权关键词共现网络的潜空间模型及其在统计知识发现中的应用
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-27 DOI: 10.1080/10618600.2024.2407465
Yan Zhang, Rui Pan, Xuening Zhu, Kuangnan Fang, Hansheng Wang
{"title":"A Latent Space Model for Weighted Keyword Co-occurrence Networks with Applications in Knowledge Discovery in Statistics","authors":"Yan Zhang, Rui Pan, Xuening Zhu, Kuangnan Fang, Hansheng Wang","doi":"10.1080/10618600.2024.2407465","DOIUrl":"https://doi.org/10.1080/10618600.2024.2407465","url":null,"abstract":"Keywords are widely recognized as pivotal in conveying the central idea of academic articles. In this article, we construct a weighted and dynamic keyword co-occurrence network and propose a latent...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"120 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TSLiNGAM: DirectLiNGAM Under Heavy Tails TSLiNGAM:沉重尾巴下的 DirectLiNGAM
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-27 DOI: 10.1080/10618600.2024.2394462
Sarah Leyder, Jakob Raymaekers, Tim Verdonck
{"title":"TSLiNGAM: DirectLiNGAM Under Heavy Tails","authors":"Sarah Leyder, Jakob Raymaekers, Tim Verdonck","doi":"10.1080/10618600.2024.2394462","DOIUrl":"https://doi.org/10.1080/10618600.2024.2394462","url":null,"abstract":"One of the established approaches to causal discovery consists of combining directed acyclic graphs (DAGs) with structural causal models (SCMs) to describe the functional dependencies of effects on...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Nonparametric Estimation of 3D Point Cloud Signals through Distributed Learning 通过分布式学习实现三维点云信号的高效非参数估计
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-24 DOI: 10.1080/10618600.2024.2406301
Guannan Wang, Yuchun Wang, Annie S. Gao, Li Wang
{"title":"Efficient Nonparametric Estimation of 3D Point Cloud Signals through Distributed Learning","authors":"Guannan Wang, Yuchun Wang, Annie S. Gao, Li Wang","doi":"10.1080/10618600.2024.2406301","DOIUrl":"https://doi.org/10.1080/10618600.2024.2406301","url":null,"abstract":"Advancements in technology have elevated the prominence of 3D point cloud data, making its analysis increasingly vital across various applications. This need drives the demand for advanced statisti...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bootstrap inference for linear time-varying coefficient models in locally stationary time series 局部静止时间序列中线性时变系数模型的引导推断
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-09-19 DOI: 10.1080/10618600.2024.2403705
Yicong Lin, Mingxuan Song, Bernhard van der Sluis
{"title":"Bootstrap inference for linear time-varying coefficient models in locally stationary time series","authors":"Yicong Lin, Mingxuan Song, Bernhard van der Sluis","doi":"10.1080/10618600.2024.2403705","DOIUrl":"https://doi.org/10.1080/10618600.2024.2403705","url":null,"abstract":"Time-varying coefficient models can capture evolving relationships. However, constructing asymptotic confidence bands for coefficient curves in these models is challenging due to slow convergence r...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"103 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信