K. Akli, Maryam Maryam, Maria Isfus Senjawati, R. A. Ilyas
{"title":"Eco-Friendly Bioprocessing Oil Palm Empty Fruit Bunch (Opefb) Fibers Into Nanocrystalline Cellulose (Ncc) Using White-Rot Fungi (Tremetes Versicolor) and Cellulase Enzyme (Trichoderma Reesei)","authors":"K. Akli, Maryam Maryam, Maria Isfus Senjawati, R. A. Ilyas","doi":"10.55043/jfpc.v1i2.55","DOIUrl":"https://doi.org/10.55043/jfpc.v1i2.55","url":null,"abstract":"The oil palm empty fruit bunch (OPEFB) as solid biomass of palm oil mill industry is available in abundance and has the potential to be utilized as the raw material of nanocrystalline cellulose (NCC). This research aims to investigate the effect of bioprocess treatment (bio-delignification, bio-bleaching, and enzymatic hydrolysis) on the nanocrystalline cellulose synthesized from OPEFB. The bio-delignification of OPEFB fiber was carried out using white-rot fungi (Tremetes versicolor and pre-bleaching pulp with xylanase. Trichoderma reesei, a cellulase enzyme type was used to hydrolyze the OPEFB fiber into nano-sized cellulose. The result exhibits that the cellulose content of OPEFB pulp using bio-delignification increased significantly compared to chemical treatment. Furthermore, the concentration of enzyme and hydrolysis time in the synthesis treatment affect reducing average particle size and increasing the crystallinity index while decreasing the yield of NCC produced. The synthesis process was under optimal processing conditions at 1% enzyme concentration and 3 days of hydrolysis time resulting in the NCC product with 155 nm of average particle size, 66.78% of crystallinity index, and a yield of 38.28%. The bioprocess technology applied in this study could improve the cellulose yield of OPEFB and enhance the quality parameters of NCC products such as particle size and crystallinity index.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130100100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rahayu, F. Hanum, N. Amrillah, L. Lim, S. Salamah
{"title":"Cellulose Extraction from Coconut Coir with Alkaline Delignification Process","authors":"A. Rahayu, F. Hanum, N. Amrillah, L. Lim, S. Salamah","doi":"10.55043/jfpc.v1i2.51","DOIUrl":"https://doi.org/10.55043/jfpc.v1i2.51","url":null,"abstract":"Coconut has been known for its benefits in human life. Coconut coir, as part of coconut which is considered as waste, contains useful components. It contains high cellulose which is could be used in fiber industries. Meanwhile, coconut coir also contains lignin which needs to be separated. In this study, a delignification process was used to remove the brown color on the fiber caused by the lignin content. The delignification process was a pretreatment before the cellulose extraction was carried out. It had been done in the various NaOH concentration (0.5; 1; and 1.5 M), reaction time (1; 1.5; and 2 hours) and the reaction temperature (60,70, and 80 oC). This study aims to determine the cellulose content and the factor that affected the cellulose extraction and the characteristics of the cellulose extracted from the coconut coir. The Chesson Data method and SEM analysis have been used for the characterization of the cellulose. The delignification method known has the potential as a simple and effective method for extracting cellulose from natural materials. The result shows that the optimum cellulose content obtained at 100 mesh coir particle size, 1.5 M NaOH concentration, at 80°C for 1.5 hours was 69.82 %.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124149205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Lestari, Rahma Aini Sapitri, D. R. Gusti, M. E. Achaby
{"title":"The Potential of Cellulose from the Sugar Palm (Arenga Pinnata) Seed Shell for Removal of Cr(Vi) Ions","authors":"I. Lestari, Rahma Aini Sapitri, D. R. Gusti, M. E. Achaby","doi":"10.55043/jfpc.v1i1.33","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.33","url":null,"abstract":"Cr (VI) is persistent, bio-accumulative, toxic metal, unable to decompose in the environment, and accumulates in the human body through the food chain. The Cr(VI) ions can remove in aqueous solution by adsorption technique with cellulose extracted. Extract of cellulose were prepare from palm (Arenga pinnata) seed shell using acidified H2SO4 and bleaching methods. The cellulose have contained the hydroxyl (–OH) functional groups in structure, it can be an adsorbent for heavy metal ions. Cellulose was obtained with delignification and bleaching methods to break the bond between lignin and cellulose. The cellulose extracted were characterized by Fourier Transformation Infra-Red (FT-IR) and Scanning Electron Microscopy - Energy Dispersive X-Ray (SEM)-EDX. The adsorption process was conducted using pH, contact time, and concentration of Cr(VI) ions. The results showed that the optimum pH was obtained at pH 3 with an adsorption capacity is 0.88 mg/g. The optimum contact time was obtained at 120 minutes with an adsorption capacity is 0.89 mg/g. The optimum concentration was obtained at a concentration of 200 ppm with an adsorption capacity is 20.34 mg/g","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"478 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116528003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pineapple Leaf Fiber Reinforced Polyester Composite Modified with Particles from Horse Dung Waste: Characterization of Mechanical Properties and Morphology","authors":"Nasmi Herlinasari, S. Suteja","doi":"10.55043/jfpc.v1i1.38","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.38","url":null,"abstract":"Abstract. The modification of the characteristics of natural fiber composites with components derived from abundant and environmentally beneficial horse dung waste has piqued interest. The purpose of this investigation was to see how adding horse dung particles (DN) to pineapple leaf fiber (DN)/polyester composites affected the results. To create new samples, different percentages of HF (5–30%) are utilized. Hand-layup method was used to create the DN/HF composite. The results revealed that adding 30% (vol. percent) HF to the composite improved elongation, flexural strength, and flexural modulus, while adding 5% (vol. percent) HF improved impact strength, tensile strength, and tensile modulus of elasticity. At 30% HF concentration, maximum flexural strength values of 63.91 5.1 MPa were recorded. The composite's fracture morphology revealed weak interfacial interactions between DN-polyester-HF, and particle accumulation.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130157021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Deswita, Y. Yusmaniar, G. T. Sulungbudi, Aloma Karo Karo, S. Sudirman
{"title":"Influence of Nanoparticle CaCO3 Addition to the Physical and Mechanical Properties of Polypropylene-CaCO3 Composite","authors":"D. Deswita, Y. Yusmaniar, G. T. Sulungbudi, Aloma Karo Karo, S. Sudirman","doi":"10.55043/jfpc.v1i1.34","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.34","url":null,"abstract":"Influence of Nanopaticle CaCO3 Addition to the Physical and Mechanical Properties of Polypropylene-CaCO3 Composite. This research was carried out to study the effect of adding CaCO3 nanoparticle on the physical and mechanical properties of polypropylene-CaCO3 composites. It was characterized by several parameters such as tensile strength, hardness, and thermal analysis including both melting point and heat of fusion using Differential Scanning Calorimetry (DSC). Based on XRD results, the particle size of CaCO3 after 24 hours of milling was 39 nm. There are various compositions of polypropylene-CaCO3 composites (PP MF35: nano-CaCO3) made in this study, namely 40%:60%, 35%:65%, 30%:70%, and 25%:75%. The results showed that the tensile strength of the PP MF35-CaCO3 composites decreased with increasing nano-CaCO3 content. Meanwhile, the hardness of the nanocomposites increased with increasing nano-CaCO3 content, but decreased the melting point and heat of fusions (ΔHm) of the nanocomposites. The infrared spectrum showed that the interaction between PP MF35 and nano-CaCO3 was only physical interaction and there was no chemical reaction.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126393846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarwin Kumar Muniandy, S.M. Sapuan, R.A. Ilyas, Shah Faisal, A. Azmi
{"title":"Sugar Palm Lignocellulosic Fiber Reinforced Polymer Composite: a Review","authors":"Sarwin Kumar Muniandy, S.M. Sapuan, R.A. Ilyas, Shah Faisal, A. Azmi","doi":"10.55043/jfpc.v1i1.36","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.36","url":null,"abstract":"Abstract. The increasing depletion of petroleum resources, as well as increased awareness of global environmental problems linked with the usage of petroleum-based plastics, are the key driving factors for the widespread acceptance of natural fibres and biopolymers composites. Sugar palm fibre (Arenga pinnata Wurmb. Merr) is one of Malaysia's most abundant and renewable fibres. The purpose of this paper is to explore the development of a sugar palm lignocellulosic fibre reinforced polymer composite. SPF is mostly composed of cellulose (43.88 %), which results in good mechanical properties. According to the review of literature, no comprehensive review article on sugar palm lignocellulosic fibre reinforced polymer composite has been published. The current investigation is focused on the mechanical, thermal, and morphological aspects of SPFs and polymers. The research also demonstrates the potential of SPF polymer hybrid composites for industrial applications such as automotive, household goods, packaging, bioenergy, and others.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115815014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Purwamargapratala, I. Gunawan, E. Kartini, A. Zulfia, Alexey Glushshenkov, D. N. Haerani, S. Sudirman
{"title":"Effect of Sodium in LiNi0,5Mn0,3Co0,2O2 as a Lithium Ion Battery Cathode Material by Solid State Reaction Method","authors":"Y. Purwamargapratala, I. Gunawan, E. Kartini, A. Zulfia, Alexey Glushshenkov, D. N. Haerani, S. Sudirman","doi":"10.55043/jfpc.v1i1.41","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.41","url":null,"abstract":"Abstract. Lithium-ion batteries (LIBs) have become widely used powder sources for portable electronics and electric vehicles. The discovery of lithium nickel manganese cobalt oxide (LiNi0.5Mn0.3Co0.2O2, NMC532), tremendous efforts have been paid to the development of Ni-rich layer-structured NMC532 materials due to its high capacity when charged to potentials higher than 4.3 V vs Li+/Li. In this work we report effect of Sodidium in NMC532 layer, the characterization was done by using X-Ray Diffractometer (XRD) to investigate the crystal structure, Electrochemical impedance spectroscopy (EIS) was used to illustrate the resistance change during cycling. The particles morphology and surface chemistry characterizations of both cathode and anode electrodes were performed on Scanning Electron Microscope (SEM). The XRD pattern of the sample shows diffraction peaks at 2θ = 18.663 o, 36.773 o, 44.459 o, 48.611 o, 58.604 o, 64.322 o, 65.069 o, 68.339 o and 77.798 o. Na does not affect the NMC532 lattice parameters, which means that Na which is expected to substitute for Li does not occur. The NMC532 conductivity with the addition of Na=0.03 showed a slightly lower value than the NMC532 conductivity with the addition of Na=0.01. Meanwhile, the highest conductivity was seen at NMC532 with the addition of Na=0.05. The addition of Na to NMC532 did not increase the conductivity linearly. SEM images of NMC532 and NMC532 with the addition of Na=0.01; Na = 0.03 and Na = 0.05 can be seen that the Na flakes wrap around the NMC532 granules. The Na flakes surrounding the NMC532 grains at Na = 0.01 were more abundant than the Na flakes surrounding the NMC532 at Na = 0.03.\u0000 ","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"139 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115966427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Activated Carbon from Coconut Shell Waste to Adsorb Cu and Mn Metals in Acid Mine Drainage","authors":"L. Ni`mah, M. Mahfud, S. Juliastuti","doi":"10.55043/jfpc.v1i1.35","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.35","url":null,"abstract":"Abstract. The purpose of this research is to make activated carbon from coconut shell carbon and examine its use in adsorbing metals in acid mine drainage; to study the types of activators; to determine the optimum mass for the efficiency of reducing the concentration of Cu2+ metal and Mn2+ metal (percent removal) using the activated carbon from coconut shell carbon; and to determine the adsorption of isothermal model. Based on the results of the study, it is concluded that activated carbon could be made from coconut shell carbon with 20% H3PO4 chemical activation. Before being activated, it was made by heating at a temperature of 300°C for 2 hours. The best activated carbon in terms of metals adsorption in acid mine drainage was in a mass of 4 grams with each percent removal of 57.62% for Cu metal and 91.37% for Mn metal. Data analysis of the effect of concentration on adsorption capacity used the Langmuir and Freundlich isotherm equations. The Langmuir equation for the adsorption of Mn metal obtained the maximum adsorption capacity (qmax) of 15.16 mg/g; KL=73.09 mol/L and R2=0.9568. Meanwhile, the adsorption of Cu metal obtained the maximum adsorption capacity (qmax)=4.73 mg/g; KL=73.14 mol/L and R2= 0.9304. In Freundlich's equation, on the adsorption of Mn metal, the resulting KF=15.14 mol/L; R2=0.9129, while on the adsorption of Cu metal, the resulting KF=.72 mol/L; R2= 0.9092. Based on the data, the adsorption isotherm curve more closely follows the Langmuir isotherm model (adsorption takes place in one layer (monolayer).","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114836040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in Biofibers and Biopolymers for Biocomposites","authors":"S. Rangappa, E. Syafri","doi":"10.55043/jfpc.v1i1.20","DOIUrl":"https://doi.org/10.55043/jfpc.v1i1.20","url":null,"abstract":"Editor's Corner","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125850354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}