利用白腐菌(Tremetes Versicolor)和纤维素酶(Trichoderma Reesei)将油棕空果束(Opefb)纤维生物加工成纳米纤维素(Ncc)

K. Akli, Maryam Maryam, Maria Isfus Senjawati, R. A. Ilyas
{"title":"利用白腐菌(Tremetes Versicolor)和纤维素酶(Trichoderma Reesei)将油棕空果束(Opefb)纤维生物加工成纳米纤维素(Ncc)","authors":"K. Akli, Maryam Maryam, Maria Isfus Senjawati, R. A. Ilyas","doi":"10.55043/jfpc.v1i2.55","DOIUrl":null,"url":null,"abstract":"The oil palm empty fruit bunch (OPEFB) as solid biomass of palm oil mill industry is available in abundance and has the potential to be utilized as the raw material of nanocrystalline cellulose (NCC). This research aims to investigate the effect of bioprocess treatment (bio-delignification, bio-bleaching, and enzymatic hydrolysis) on the nanocrystalline cellulose synthesized from OPEFB. The bio-delignification of OPEFB fiber was carried out using white-rot fungi (Tremetes versicolor and pre-bleaching pulp with xylanase. Trichoderma reesei, a cellulase enzyme type was used to hydrolyze the OPEFB fiber into nano-sized cellulose. The result exhibits that the cellulose content of OPEFB pulp using bio-delignification increased significantly compared to chemical treatment. Furthermore, the concentration of enzyme and hydrolysis time in the synthesis treatment affect reducing average particle size and increasing the crystallinity index while decreasing the yield of NCC produced. The synthesis process was under optimal processing conditions at 1% enzyme concentration and 3 days of hydrolysis time resulting in the NCC product with 155 nm of average particle size, 66.78% of crystallinity index, and a yield of 38.28%. The bioprocess technology applied in this study could improve the cellulose yield of OPEFB and enhance the quality parameters of NCC products such as particle size and crystallinity index.","PeriodicalId":153677,"journal":{"name":"Journal of Fibers and Polymer Composites","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eco-Friendly Bioprocessing Oil Palm Empty Fruit Bunch (Opefb) Fibers Into Nanocrystalline Cellulose (Ncc) Using White-Rot Fungi (Tremetes Versicolor) and Cellulase Enzyme (Trichoderma Reesei)\",\"authors\":\"K. Akli, Maryam Maryam, Maria Isfus Senjawati, R. A. Ilyas\",\"doi\":\"10.55043/jfpc.v1i2.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oil palm empty fruit bunch (OPEFB) as solid biomass of palm oil mill industry is available in abundance and has the potential to be utilized as the raw material of nanocrystalline cellulose (NCC). This research aims to investigate the effect of bioprocess treatment (bio-delignification, bio-bleaching, and enzymatic hydrolysis) on the nanocrystalline cellulose synthesized from OPEFB. The bio-delignification of OPEFB fiber was carried out using white-rot fungi (Tremetes versicolor and pre-bleaching pulp with xylanase. Trichoderma reesei, a cellulase enzyme type was used to hydrolyze the OPEFB fiber into nano-sized cellulose. The result exhibits that the cellulose content of OPEFB pulp using bio-delignification increased significantly compared to chemical treatment. Furthermore, the concentration of enzyme and hydrolysis time in the synthesis treatment affect reducing average particle size and increasing the crystallinity index while decreasing the yield of NCC produced. The synthesis process was under optimal processing conditions at 1% enzyme concentration and 3 days of hydrolysis time resulting in the NCC product with 155 nm of average particle size, 66.78% of crystallinity index, and a yield of 38.28%. The bioprocess technology applied in this study could improve the cellulose yield of OPEFB and enhance the quality parameters of NCC products such as particle size and crystallinity index.\",\"PeriodicalId\":153677,\"journal\":{\"name\":\"Journal of Fibers and Polymer Composites\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fibers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55043/jfpc.v1i2.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fibers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55043/jfpc.v1i2.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

油棕空果束(OPEFB)作为棕榈油工业的固体生物质资源丰富,具有作为纳米晶纤维素(NCC)原料的潜力。本研究旨在探讨生物工艺处理(生物脱木质素、生物漂白和酶解)对OPEFB合成纳米纤维素的影响。利用白腐菌和木聚糖酶预处理纸浆,对OPEFB纤维进行生物脱木素作用。利用纤维素酶型里氏木霉(Trichoderma reesei)将OPEFB纤维水解成纳米纤维素。结果表明,与化学处理相比,生物脱木质素处理的OPEFB纸浆纤维素含量显著提高。合成过程中酶的浓度和水解时间影响了平均粒径的减小和结晶度指数的提高,同时降低了NCC的产率。在酶浓度为1%、水解时间为3 d的最佳工艺条件下,合成的NCC产物平均粒径为155 nm,结晶度指数为66.78%,产率为38.28%。本研究应用的生物工艺技术可以提高OPEFB的纤维素产率,提高NCC产品的粒度、结晶度等质量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-Friendly Bioprocessing Oil Palm Empty Fruit Bunch (Opefb) Fibers Into Nanocrystalline Cellulose (Ncc) Using White-Rot Fungi (Tremetes Versicolor) and Cellulase Enzyme (Trichoderma Reesei)
The oil palm empty fruit bunch (OPEFB) as solid biomass of palm oil mill industry is available in abundance and has the potential to be utilized as the raw material of nanocrystalline cellulose (NCC). This research aims to investigate the effect of bioprocess treatment (bio-delignification, bio-bleaching, and enzymatic hydrolysis) on the nanocrystalline cellulose synthesized from OPEFB. The bio-delignification of OPEFB fiber was carried out using white-rot fungi (Tremetes versicolor and pre-bleaching pulp with xylanase. Trichoderma reesei, a cellulase enzyme type was used to hydrolyze the OPEFB fiber into nano-sized cellulose. The result exhibits that the cellulose content of OPEFB pulp using bio-delignification increased significantly compared to chemical treatment. Furthermore, the concentration of enzyme and hydrolysis time in the synthesis treatment affect reducing average particle size and increasing the crystallinity index while decreasing the yield of NCC produced. The synthesis process was under optimal processing conditions at 1% enzyme concentration and 3 days of hydrolysis time resulting in the NCC product with 155 nm of average particle size, 66.78% of crystallinity index, and a yield of 38.28%. The bioprocess technology applied in this study could improve the cellulose yield of OPEFB and enhance the quality parameters of NCC products such as particle size and crystallinity index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信