Qing Yong Ng, Vikneswari Mahendran, Ze Qin Lim, Jasmine Hwee Yee Tan, Joel Jie Feng Wong, Justin Jang Hann Chu, Vincent T K Chow, Newman Siu Kwan Sze, Sylvie Alonso
{"title":"Enterovirus-A71 exploits RAB11 to recruit chaperones for virus morphogenesis.","authors":"Qing Yong Ng, Vikneswari Mahendran, Ze Qin Lim, Jasmine Hwee Yee Tan, Joel Jie Feng Wong, Justin Jang Hann Chu, Vincent T K Chow, Newman Siu Kwan Sze, Sylvie Alonso","doi":"10.1186/s12929-024-01053-2","DOIUrl":"10.1186/s12929-024-01053-2","url":null,"abstract":"<p><strong>Background: </strong>Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive.</p><p><strong>Methods: </strong>A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection.</p><p><strong>Results: </strong>Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection.</p><p><strong>Conclusions: </strong>This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"65"},"PeriodicalIF":9.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nesrin Gariballa, Feda Mohamed, Sally Badawi, Bassam R Ali
{"title":"The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy.","authors":"Nesrin Gariballa, Feda Mohamed, Sally Badawi, Bassam R Ali","doi":"10.1186/s12929-024-01054-1","DOIUrl":"https://doi.org/10.1186/s12929-024-01054-1","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"64"},"PeriodicalIF":9.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kang Wen, Xin Chen, Jingyao Gu, Zhenyao Chen, Zhaoxia Wang
{"title":"Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors.","authors":"Kang Wen, Xin Chen, Jingyao Gu, Zhenyao Chen, Zhaoxia Wang","doi":"10.1186/s12929-024-01047-0","DOIUrl":"10.1186/s12929-024-01047-0","url":null,"abstract":"<p><p>Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"63"},"PeriodicalIF":9.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adipocyte pyroptosis occurs in omental tumor microenvironment and is associated with chemoresistance of ovarian cancer.","authors":"Chang-Ni Lin, Yu-Ling Liang, Hsing-Fen Tsai, Pei-Ying Wu, Lan-Yin Huang, Yu-Han Lin, Chieh-Yi Kang, Chao-Ling Yao, Meng-Ru Shen, Keng-Fu Hsu","doi":"10.1186/s12929-024-01051-4","DOIUrl":"10.1186/s12929-024-01051-4","url":null,"abstract":"<p><strong>Background: </strong>Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer.</p><p><strong>Methods: </strong>A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis.</p><p><strong>Results: </strong>In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival.</p><p><strong>Conclusions: </strong>Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"62"},"PeriodicalIF":11.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhan Huang, Pan-Deng Shi, Xiao-Xuan Fan, Yang Yang, Cheng-Feng Qin, Hui Zhao, Lei Shi, Yali Ci
{"title":"The glycosylation deficiency of flavivirus NS1 attenuates virus replication through interfering with the formation of viral replication compartments.","authors":"Shuhan Huang, Pan-Deng Shi, Xiao-Xuan Fan, Yang Yang, Cheng-Feng Qin, Hui Zhao, Lei Shi, Yali Ci","doi":"10.1186/s12929-024-01048-z","DOIUrl":"10.1186/s12929-024-01048-z","url":null,"abstract":"<p><strong>Background: </strong>Flavivirus is a challenge all over the world. The replication of flavivirus takes place within membranous replication compartments (RCs) derived from endoplasmic reticulum (ER). Flavivirus NS1 proteins have been proven essential for the formation of viral RCs by remodeling the ER. The glycosylation of flavivirus NS1 proteins is important for viral replication, yet the underlying mechanism remains unclear.</p><p><strong>Methods: </strong>HeLa cells were used to visualize the ER remodeling effects induced by NS1 expression. ZIKV replicon luciferase assay was performed with BHK-21 cells. rZIKV was generated from BHK-21 cells and the plaque assay was done with Vero Cells. Liposome co-floating assay was performed with purified NS1 proteins from 293T cells.</p><p><strong>Results: </strong>We found that the glycosylation of flavivirus NS1 contributes to its ER remodeling activity. Glycosylation deficiency of NS1, either through N-glycosylation sites mutations or tunicamycin treatment, compromises its ER remodeling activity and interferes with viral RCs formation. Disruption of NS1 glycosylation results in abnormal aggregation of NS1, rather than reducing its membrane-binding activity. Consequently, deficiency in NS1 glycosylation impairs virus replication.</p><p><strong>Conclusions: </strong>In summary, our results highlight the significance of NS1 glycosylation in flavivirus replication and elucidate the underlying mechanism. This provides a new strategy for combating flavivirus infections.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"60"},"PeriodicalIF":11.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Mosca, Nicola Alessio, Alessandra Di Paola, Maria Maddalena Marrapodi, Umberto Galderisi, Aniello Russo, Francesca Rossi, Nicoletta Potenza
{"title":"Osteosarcoma in a ceRNET perspective.","authors":"Nicola Mosca, Nicola Alessio, Alessandra Di Paola, Maria Maddalena Marrapodi, Umberto Galderisi, Aniello Russo, Francesca Rossi, Nicoletta Potenza","doi":"10.1186/s12929-024-01049-y","DOIUrl":"10.1186/s12929-024-01049-y","url":null,"abstract":"<p><p>Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated \"competing endogenous RNA network\" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"59"},"PeriodicalIF":11.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Dumonteil, Weihong Tu, Hans Desale, Kelly Goff, Preston Marx, Jaime Ortega-Lopez, Claudia Herrera
{"title":"Immunoglobulin and T cell receptor repertoire changes induced by a prototype vaccine against Chagas disease in naïve rhesus macaques.","authors":"Eric Dumonteil, Weihong Tu, Hans Desale, Kelly Goff, Preston Marx, Jaime Ortega-Lopez, Claudia Herrera","doi":"10.1186/s12929-024-01050-5","DOIUrl":"10.1186/s12929-024-01050-5","url":null,"abstract":"<p><strong>Background: </strong>A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques.</p><p><strong>Methods: </strong>We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires.</p><p><strong>Results: </strong>RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose.</p><p><strong>Conclusions: </strong>These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"58"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geoffrey P Dobson, Hayley L Letson, Jodie L Morris
{"title":"Revolution in sepsis: a symptoms-based to a systems-based approach?","authors":"Geoffrey P Dobson, Hayley L Letson, Jodie L Morris","doi":"10.1186/s12929-024-01043-4","DOIUrl":"10.1186/s12929-024-01043-4","url":null,"abstract":"<p><p>Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O<sub>2</sub> supply. Future research will investigate the potential translation to humans.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"57"},"PeriodicalIF":9.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"USP9X-mediated REV1 deubiquitination promotes lung cancer radioresistance via the action of REV1 as a Rad18 molecular scaffold for cystathionine γ-lyase.","authors":"Yunshang Chen, Xue Feng, Zilong Wu, Yongqiang Yang, Xinrui Rao, Rui Meng, Sheng Zhang, Xiaorong Dong, Shuangbing Xu, Gang Wu, Xiaohua Jie","doi":"10.1186/s12929-024-01044-3","DOIUrl":"10.1186/s12929-024-01044-3","url":null,"abstract":"<p><strong>Background: </strong>Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment.</p><p><strong>Methods: </strong>The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1.</p><p><strong>Results: </strong>Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism.</p><p><strong>Conclusion: </strong>USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"55"},"PeriodicalIF":11.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}