{"title":"(DE) -Ubiquitination in The TGF-β Pathway","authors":"P. J. Eichhorn","doi":"10.17303/JCRTO.2013.1.102","DOIUrl":"https://doi.org/10.17303/JCRTO.2013.1.102","url":null,"abstract":"Aberrations in the enzymes that modify ubiquitin moieties have been observed to cause a myriad of diseases, including cancer. Therefore a better understanding of these enzymes and their substrates will lead to the identification of prospective druggable targets. Here we discuss the role of ubiquitin modifying enzymes in the canonical TGF-β pathway highlighting the ubiquitin regulating enzymes, which may potentially be targeted by small molecule inhibitors.","PeriodicalId":15189,"journal":{"name":"Journal of Cancer Research and Therapeutic Oncology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84976147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Putative Role of Organic Anion Transporting Polypeptides (Oatps) In Cell Survival of Hormone-Dependent Breast and Prostate Cancers","authors":"T. Nakanishi","doi":"10.17303/JCRTO.2013.1.101","DOIUrl":"https://doi.org/10.17303/JCRTO.2013.1.101","url":null,"abstract":"Transporter proteins classified into the solute carrier (SLC) transporter superfamily are essential for import of nutrients for cell survival in organisms. In the last two decades, compelling evidence has accumulated that SLC transporters interact with clinically important anticancer agents and contribute to their pharmacokinetics, particularly the biopharmaceutical processes of absorption, elimination and distribution. Furthermore, many SLC transporters have been shown to be differentially upregulated in cancer cells, and this may represent an adaptive response to altered nutritional requirements. Thus, it is likely to utilize them as carrier for efficient drug delivery as well as pharmacological target to shut off the essential nutrients for cell growth of malignant tumors. This short review will introduce organic anion transporting polypeptides which recognize endo- and exogenous organic anionic compounds and recent findings about their upregulation in cancer cells. Besides, OATP-mediated sulfate conjugates of steroid hormone may contribute to cell survival and adapted growth under hormonedepleted conditions. Better understandings of pathophysiological role of OATPs likely provide key information to overcome hormone-refractory breast and prostate tumors.","PeriodicalId":15189,"journal":{"name":"Journal of Cancer Research and Therapeutic Oncology","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77462039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Safe Doses and Cancer Treatment Evaluation","authors":"Emad Y Moawad","doi":"10.13189/COR.2013.010102","DOIUrl":"https://doi.org/10.13189/COR.2013.010102","url":null,"abstract":"The aim of this research is to check the efficacy of radiotherapy after execution that helps in preserving patients' rights against the randomized dose that settled statistically and assessed in standard models ignoring patient-specific factors. Based on studying a dose-response relationship, a mathematical model is presented describes the initial tumor energy (E0Tumor) prior therapy after treatment execution -even if it was not predetermined- by monitoring the tumor response along the treatment phases and compared to the applied dose energy (E0Dose). Our model allows mechanic risk predictions to be made at high radiotherapeutic doses as well as at low doses, besides to the second cancer risk prevention. Thus, the administered dose errors could be determined and consequently preserving patients' rights to evaluate the cancer treatment through the provided mathematical model. Reasons of tumor regrowth are either underestimation or overestimation of the administered dose; the safe dose of the successful treatment occurs only in the case of: E0Dose = E0Tumor, where tumor regrowth energy in such a case would be vanished. Dose assessment by ignoring patient-specific factors and using standard models is responsible for wide range of doses that lead to tumor regrowth and second cancer risks. Current approach suggests settling down a new protocol for the proper ranges of radionuclide doses based on a personalized staging system.","PeriodicalId":15189,"journal":{"name":"Journal of Cancer Research and Therapeutic Oncology","volume":"31 1","pages":"6-11"},"PeriodicalIF":0.0,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87524850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}