{"title":"Nanophytovirology: An Emerging Field for Disease Management","authors":"A. Marwal, R. Gaur","doi":"10.5772/INTECHOPEN.86653","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86653","url":null,"abstract":"Nanotechnology positions as a new armament in our collection against the increasing challenges in disease management and plant/human health. The application of nanotechnology in plant/human disease administration, diagnosis, and genetic transformations is still in its early stages. Apart from the scope of this chapter, there is also a mounting collection of new tools and techniques where nanoparticles are employed as delivery vehicles for genetic material in plants. Due to their nanoscale dimensions, nanoparticles may knockout virus particles and thus may open a novel arena of virus control in plants/humans. Our aim is to enlighten and enthuse researchers about the swiftly expanding prospects of nanotechnology in plant pathology i.e., “nanophytovirology.”","PeriodicalId":151191,"journal":{"name":"Plant Diseases - Current Threats and Management Trends","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125026786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Climate Change on Plant Diseases and IPM Strategies","authors":"S. Zayan","doi":"10.5772/INTECHOPEN.87055","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.87055","url":null,"abstract":"There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. Climate change influences the occurrence, prevalence, and severity of plant diseases. Projected atmospheric and climate change will thus affect the interaction between crops and pathogens in multiple ways. This will also affect disease management with regard to timing, preference, and efficacy of chemical, physical, and biological measures of control and their utilization within integrated pest management (IPM) strategies. Prediction of future requirements in disease management is of great interest for agro-industries, extension services, and practical farmers. A comprehensive analysis of potential climate change effects on disease control is difficult because current knowledge is limited and fragmented and due to the complexity of future risks for plant disease management, particu-larly if new crops are introduced in an area. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs. All these efforts and integrations will produce effective crop protection strategies using novel technologies as appropriate tools to adapt to altered climatic conditions.","PeriodicalId":151191,"journal":{"name":"Plant Diseases - Current Threats and Management Trends","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131706335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}