{"title":"Multifractal and monofractal characteristics of ULF magnetic fields in Kachchh region, Gujarat, India: Prospects for earthquake precursor detection","authors":"Sushanta Kumar Sahoo, Madhusudhanarao Katlamudi, Chandra Sekhar Pedapudi","doi":"10.1016/j.jastp.2025.106478","DOIUrl":"10.1016/j.jastp.2025.106478","url":null,"abstract":"<div><div>Understanding electromagnetic emissions linked to earthquakes is critical for advancing precursor studies, yet research remains limited in seismically active regions like Kachchh, Gujarat, India. This study investigates Ultra-Low Frequency (ULF) magnetic field variations recorded over eight months (January 1–August 13, 2012) at the Multi-parametric Geophysical Observatory (MPGO) in Desalpar (23.742°N, 70.686°E). The analysis focuses on their connection to a magnitude 5.1 earthquake near the observatory on June 20, 2012. Data from a Digital Fluxgate Magnetometer (DFM) were analyzed using Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA) to explore scaling properties in the 0.001–0.1 Hz frequency range. Periodogram analysis identified diurnal and semi-diurnal periodicities, removed using Empirical Mode Decomposition (EMD) to isolate aperiodic signals. DFA results showed non-uniform fluctuation functions with scaling exponent variations prior to the earthquake on June 20, 2012. Notably, the instability index (β) increased in the H-component six days before the event (June 14, 2012), in the D-component on June 17–18, 2012, and in the Z-component one day before (June 19, 2012). MFDFA revealed long-range power-law correlations, with differences in multifractal spectra between observed and shuffled time series, indicating long-range correlations drive multifractality. Surrogate analyses confirmed these correlations while reducing Gaussian characteristics. The multifractal spectrum of H, D, and Z components widened during seismically active phases compared to quiet phases, emphasizing the utility of multifractal analysis in detecting ULF magnetic field instabilities. Abnormal time dynamics in the multifractal characteristics of the H- and Z-components were observed shortly before the earthquake on June 20, 2012. This research highlights the potential of such methods for earthquake monitoring and early-warning systems in active seismic regions.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106478"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunzhou Zhu , Qiong Tang , Zhongxin Deng , Chen Zhou , Tong Xu , Yi Liu , Zhengyu Zhao , Fengsi Wei
{"title":"Statistical study of low-latitude E-region irregularity occurrence rate based on Qujing VHF radar observations","authors":"Yunzhou Zhu , Qiong Tang , Zhongxin Deng , Chen Zhou , Tong Xu , Yi Liu , Zhengyu Zhao , Fengsi Wei","doi":"10.1016/j.jastp.2025.106479","DOIUrl":"10.1016/j.jastp.2025.106479","url":null,"abstract":"<div><div>Based on the Quing VHF radar (25.6°N, 103.7°E, magnetic latitude 16.1°N, magnetic longitude 177.0°E) measurements from 2016 to 2020, the morphological characteristic of low-latitude E-region field-aligned irregularities (FAIs) was reported in this work. Statistical results show that the occurrence of Qujing E-region irregularities highly depends on both season and local time. The occurrence rate of E-region FAIs peaks in the summer, with the lowest occurrence rates in autumn and winter, and primarily occurs at night. The Doppler spectrum suggests that the Qujing E-region FAI echoes are mainly characterized by type II echoes. Quantitative analysis of both the activity of the Es layer and E-region FAI structures was also conducted. It is found that the occurrence of low-latitude E-region FAIs is closely correlated with the enhanced electron density structures inherent in the local Es layers. Given the weak electric field at low and mid-latitudes, neutral winds controlling ion drift likely trigger gradient drift instability above the Es layer, leading to small-scale irregularities in Qujing. Further investigation is required to understand the influence of the medium-scale traveling ionospheric disturbance on the occurrence rate of ionosphere E-region FAIs in low latitudes.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106479"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term drought characterization: A spatiotemporal analysis in Rayalaseema, southern peninsular India","authors":"Kandula Bharghavi , Hemalatha Kapa , Thotli Lokeswara Reddy , Penti Rajesh , Krishnareddigari Krishna Reddy","doi":"10.1016/j.jastp.2025.106467","DOIUrl":"10.1016/j.jastp.2025.106467","url":null,"abstract":"<div><div>The unique combination of features in Andhra Pradesh's Rayalaseema region makes it an ideal location for drought studies. These features include hilly terrain, a semi-arid climate with the lowest rainfall in India, and the influence of both the Southwest and Northeast monsoons. Rainfall is a fundamental metric for water availability, while temperature plays a pivotal role in regulating evapotranspiration rates. Understanding their trends is crucial since both factors are integral in delineating drought conditions. This study delves into the drought dynamics of the Rayalaseema region from 1961 to 2021, employing meteorological drought indices: the standardized precipitation evapotranspiration index (SPEI) and the standardized precipitation index (SPI). In order to achieve this, rainfall data was retrieved from the archives of the India Meteorological Department (IMD), while temperature data was sourced from ERA-5 (the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis). In order to assess the significance of drought characteristic trends across various temporal and spatial scales, the Mann-Kendall trend test and Sen's slope estimator techniques were applied. Rainfall patterns varied significantly, with Kurnool receiving the highest and Anantapur the lowest, while temperatures steadily increased, peaking in the sixth decade, especially in Kadapa, Kurnool, and Chittoor, with June being the warmest month. Rainfall trends shifted from negative to positive, with Kurnool and Chittoor experiencing significant increases, while Kadapa and Anantapur continued to face negative trends. Drought conditions, as measured by SPI and SPEI, were frequent, particularly in the first three decades, with a shift towards wetter conditions in later decades. The SPEI trends revealed rising drought severity, exacerbated by increasing temperatures, particularly in Kurnool and Kadapa. Nonetheless, both indices effectively capture significant drought events, with SPEI detecting more severe drought occurrences than SPI.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106467"},"PeriodicalIF":1.8,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deying Wang , Jizhi Wang , Yuanqin Yang , Wenxing Jia , Junting Zhong , Xiaofei Jiang , Liangke Liu , Yaqiang Wang , Xiaoye Zhang
{"title":"Sudden pollution incidents around Beijing on a crisp October day: Insights from capturing pollution conveyor belts","authors":"Deying Wang , Jizhi Wang , Yuanqin Yang , Wenxing Jia , Junting Zhong , Xiaofei Jiang , Liangke Liu , Yaqiang Wang , Xiaoye Zhang","doi":"10.1016/j.jastp.2025.106461","DOIUrl":"10.1016/j.jastp.2025.106461","url":null,"abstract":"<div><div>North China Plain, an area is usually sunny and cloudless in autumn, rare heavy pollution suddenly occurred around Beijing. This is a new focus of public attention and research. Since late October 2023, it has caused sudden haze pollution. This study focuses on capturing the mechanisms behind sudden pollution in clear skies, tracking the establishment and transmission of adverse weather conditions, focusing on targeted key stations affected by adverse weather. Revealing the correlation between implicit multiple types of precursor meteorological signals: atmospheric boundary layer, condensation rate threshold, in the atmosphere. Obtain the coupling point of the interaction and matching between micro-scale disturbances and weather-scale fluctuations, and reveal its driving mechanism behind sudden pollution in clear skies. The novelty of this study lies in targeting regions that have achieved certain success in emission reduction. Provide insights into the \"feedback\" effects that adverse weather conditions can cause. It particularly provides a further understanding of the interactions between clouds, aerosols in the “pollution conveyor belt” and provides quantitative indicators for early warning. Provide quantitative technical support for developing accurate response measures in air quality research.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106461"},"PeriodicalIF":1.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schumann resonance as a remote sensor of lower ionosphere and global thunderstorms as based on the long-term observations at Antarctic and Arctic stations","authors":"A.P. Nickolaenko , M. Hayakawa , O. Koloskov","doi":"10.1016/j.jastp.2025.106465","DOIUrl":"10.1016/j.jastp.2025.106465","url":null,"abstract":"<div><div>We evaluate the impact of solar activity on the global ionosphere and the position of world thunderstorms by analyzing the peak frequency of the first Schumann resonance (SR) mode in the simultaneous records of the horizontal magnetic field components at the high-latitude observatories in the Southern and Northern hemispheres. The long-term monitoring was conducted at the Ukrainian Antarctic Station (UAS) “Akademik Vernadsky” (geographic coordinates: 65.25° S and 64.25° W) and the SOUSY Arctic Svalbard observatory (78.15° N and 16.05° E). A specialized technique was applied to process observational data that exploits the half-sum and semi-difference of the peak frequencies measured simultaneously at these observatories. This approach enables the separation and quantification of the impact of solar activity on the effective height of the lower ionosphere and the distance to the global thunderstorms. The following findings are demonstrated: (i) Alterations in the position of global thunderstorms can be separated from modifications of the lower ionosphere height; (ii) The employment of pivoted vertical profile of the middle atmosphere conductivity indicates that an increase occurs of the upper characteristic height <em>h</em><sub><em>L</em></sub> of the lower ionosphere during the decline in the solar activity. (iii) Kilometer-scale changes in the ionospheric height are linked to variations in the solar activity, and this effect is accompanied by minute (approximately 1° of latitude) displacements of global thunderstorms.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106465"},"PeriodicalIF":1.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P.P. Leena , E.A. Resmi , Dhwanit.J. Mise , V. Anilkumar , V.S. Arun , Rohit P.Patil , G. Pandithurai , Lekshmi Anilkumar
{"title":"Observed thermodynamical-cloud-rain characteristics during pre-monsoon precipitating events over a high-altitude site in Western Ghats, India","authors":"P.P. Leena , E.A. Resmi , Dhwanit.J. Mise , V. Anilkumar , V.S. Arun , Rohit P.Patil , G. Pandithurai , Lekshmi Anilkumar","doi":"10.1016/j.jastp.2025.106459","DOIUrl":"10.1016/j.jastp.2025.106459","url":null,"abstract":"<div><div>The present study detailed the atmospheric stability and cloud-rain properties during pre-monsoon precipitating events using co-located ground-based observation of a high-altitude site, in Western Ghats, India. The meteorological - moisture parameters and stability indices showed strong diurnal and seasonal variation over the study region. Higher values in the stability indices and moisture parameters were noted throughout the day (during afternoon hours) of monsoon (pre- and post-monsoon) suggesting the possibility of convective activity over the study region. Features of layered clouds mostly, with low bases were noticed during monsoon, followed by pre- and post-monsoon.</div><div>A detailed analysis of meteorological-moisture parameters, stability indices, and cloud properties during pre-monsoon, highlighted an apparent change in these parameters from non-precipitating to precipitating events. Strong precipitating event were characterized by higher low-level moisture,sharp changes in the meteorological parameters and few stability indices. Higher values of radar reflectivity (>40 dBz) indicated strong precipitating event as a convective storm. Higher liquid and lower values of brightness temperature confirmed the presence of deep clouds during the strong event. Quantitative analysis showed higher values in temperature (T), equivalent potential temperature (EPT), total total index (TTI), K-index (KI), humidity index (HI), and lifted index (LI) ∼2 h before the strong event suggesting an unstable atmosphere and conducive for thunderstorm development. Single-layer clouds of ∼8% (20%) and the double layer of ∼42% (26%) were observed before (after) the strong event. An apparent difference in the CFAD of radar reflectivity was noticed between strong and weak cases with high reflectivity values in the lower altitudes for strong cases as compared to weak ones. We believe that this information is very useful for the nowcasting of thunderstorms.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106459"},"PeriodicalIF":1.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Zhou , Xueli Sha , Lingyu Wang , Xiang Li , Zhihao Zhang
{"title":"Spatial and temporal dynamics of solar energy resources in China and forecast of future solar radiation","authors":"Yong Zhou , Xueli Sha , Lingyu Wang , Xiang Li , Zhihao Zhang","doi":"10.1016/j.jastp.2025.106463","DOIUrl":"10.1016/j.jastp.2025.106463","url":null,"abstract":"<div><div>Solar radiation exhibits significant temporal fluctuations due to the influence of atmospheric water vapor, aerosols, haze, etc. It is crucial to analyze the temporal pattern of change and future distribution of solar energy resources for optimize their utilization and facilitate their development. Consequently, this study analyzes solar radiation data from 1994 meteorological stations, identifying complex trends and using sudden change tests to predict the annual and seasonal distributions of solar radiation in China over the next five or ten years. The results indicate a declining trend in global solar radiation across most of China, with an average annual decrease of −4.26 MJ/m<sup>2</sup>/y. The annual variation in diffuse solar radiation demonstrates an upward trajectory, with an average increase of 0.34 MJ/m<sup>2</sup>/y. For the next 5 and 10 years, global solar radiation values are estimated to range from 3020 to 6840 MJ/m<sup>2</sup> and from 2970 to 6940 MJ/m<sup>2</sup>, respectively. The spatial distribution exhibits higher in the west and north, and lower in the east and south. The annual diffuse solar radiation values for the next five and ten years are estimated to range from 650 to 3060 MJ/m<sup>2</sup> and 680–3120 MJ/m<sup>2</sup>, respectively, exhibiting an increasing trend from north to south.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106463"},"PeriodicalIF":1.8,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chaotic variability of the magnetic field at Earth’s surface driven by ionospheric and space plasmas","authors":"Alexander Bershadskii","doi":"10.1016/j.jastp.2025.106456","DOIUrl":"10.1016/j.jastp.2025.106456","url":null,"abstract":"<div><div>It is shown that the universal chaotic/turbulent processes in space (solar wind and magnetosphere) and in ionospheric plasmas drive the chaotic temporal variability and determine the level of randomness of the magnetic field at Earth’s surface in the temporal range from a few hours to a few years. The results of observations provided by the spacecraft and satellite missions, and the global magnetic observatory network were used for this purpose. A good agreement has been established between the results of observations and a theoretical approach based on the Kolmogorov–Iroshnikov phenomenology in the frames of distributed chaos notion.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106456"},"PeriodicalIF":1.8,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of land use land cover and topography on lightning distribution over north and north-east Indian region","authors":"Swapnil S. Potdar , Devendraa Siingh , Rupraj Biswasharma , Alok Sagar Gautam , R.P. Singh","doi":"10.1016/j.jastp.2025.106460","DOIUrl":"10.1016/j.jastp.2025.106460","url":null,"abstract":"<div><div>Spatio-temporal variation of lightning characteristics over North India (NI) and North-East India (NEI) during the period 2001–2014 is studied in connection with the land use land cover (LULC) and topography of the Himalaya ranges. Lightning flashes detected by Lightning Imaging Sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite are analysed for different LULC classes measured by Moderate Resolution Imaging Spectroradiometer (MODIS) and elevation data from Shuttle Radar Topography Mission (SRTM). We observed that the annual lightning flashes are high in the NI region compared to the NEI region; with a peak during monsoon period in the NI region, whereas peaks in the NEI were found to be during pre-monsoon months. The thermodynamics parameters such as maximum temperature (MaxT), convective available potential energy (CAPE), latent heat flux (LHF) and bulk microphysics such as total cloud cover liquid water (TCCLW) and total cloud cover ice water (TCCIW) along with lightning flash rate density (LFRD) also analysed with respect to different LULC classes. The impact of LULC on lightning activity is evident in both the study regions. In the both the region, human-induced landscapes such as croplands, urban built-up areas consistently show the high lightning activity due to favourable thermodynamic and microphysical conditions. Natural landscapes such as forest, grasslands show moderate lightning activity while savannas and permanent wetlands shows high lightning activity showing that vegetation helps in maintaining high soil moisture which may play a significant role in lightning occurrences. Topography significantly influenced lightning occurrence, with higher flash rates in foothill areas due to surface heating and moisture convergence, and in Meghalaya due to orographic lifting. Lightning activity in both study regions is higher at lower altitudes (<500m) and decreases with altitude, with a more prominent decline in case of NI region. We found the positive lightning trends in areas of expanding agriculture and urbanization highlighting the role of LULC change in the lightning distribution over both the regions.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"268 ","pages":"Article 106460"},"PeriodicalIF":1.8,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anselem Onyejuruwa , Zhenghua Hu , Abu Reza Md Towfiqul Islam , Eniola Olaniyan , Kyaw Than Oo
{"title":"Different microphysics parameterizations of hydrometeor pathways in WRF simulation: A case of two high rainfall events in Nigeria","authors":"Anselem Onyejuruwa , Zhenghua Hu , Abu Reza Md Towfiqul Islam , Eniola Olaniyan , Kyaw Than Oo","doi":"10.1016/j.jastp.2025.106455","DOIUrl":"10.1016/j.jastp.2025.106455","url":null,"abstract":"<div><div>This study evaluates the role and performance of microphysical processes and parameterizations in simulating two distinct rainfall events over Nigeria. Four microphysics (MP) schemes in the Weather Research and Forecasting (WRF) model—Goddard, Morrison, Thompson, and WDM6—were utilized. The analysis focused on mean rainfall rates, hydrometeor pathways, and spatial rainfall accumulation amounts and patterns.</div><div>Results indicate that while most MP schemes underestimated the mean rainfall rate, they reasonably captured the spatial distributions in both events. Based on statistical metrics of 24-h accumulated rainfall, the Goddard scheme produced the lowest mean absolute bias (MAB) and the highest rainfall detection ability (POD and TS) for the June rainfall event. For the February event, the Morrison scheme exhibited the least absolute bias and achieved high POD and TS values. The differences in rainfall production among the MP schemes were primarily attributed to variations in the growth rates of rainwater hydrometeors within the hydrometeor pathways (HPs), while rainfall duration was influenced by consistent collision and coalescence of cloud droplets. Excessive cloud water production also contributed to delays in rainwater formation, leading to reduced simulated rainfall. Additionally, the rapid melting of large graupel mass significantly affected the performance of different schemes in simulating rainfall. Furthermore, variations in low to mid-tropospheric vertical velocity and surface parameters (such as temperature and specific humidity) were shown to significantly control microphysical processes and, consequently, impact rainfall production.</div><div>Overall, the analysis suggests that more sophisticated MP schemes do not necessarily provide better simulations of precipitable hydrometeor pathways.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"268 ","pages":"Article 106455"},"PeriodicalIF":1.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}