{"title":"利用GNSS数据估算塔什干上空ERA5对流层参数","authors":"H.E. Eshkuvatov , Sh.N. Mardonov , O.V. Xudoynazarov , Z.J. Ruziev , Sh.Sh. Numonjonov , J.R. Hoshimov , F.X. Asatullayev , I.M. Egamberdiev , M.A. Musurmonov","doi":"10.1016/j.jastp.2025.106648","DOIUrl":null,"url":null,"abstract":"<div><div>Remote sensing of atmospheric water vapor using Global Navigation Satellite System (GNSS) signals has become an important technique in meteorology, weather forecasting, and climate research. This study investigated regional atmospheric variability over Tashkent, Uzbekistan, by analyzing ten key atmospheric parameters from the ERA5 reanalysis and retrieving precipitable water vapor (PW) from GNSS-derived tropospheric delay data. The analysis covered the period from 12 to 22 February 2025 (day of year 43–53), using ground-based observations from the Tashkent (TASH) and Maidantal (MTAL) GNSS stations. The primary aim was to enhance the characterization of regional atmospheric dynamics and to evaluate the potential of GNSS-derived PW for improving precipitation forecasting when combined with reanalysis data. The results revealed a strong correlation between GNSS-derived and ERA5-derived PW values, indicating that GNSS tropospheric delay observations reliably capture short-term variations in atmospheric water vapor. These findings confirm the utility of integrating GNSS retrievals with reanalysis products for high-resolution monitoring of atmospheric processes in Central Asia.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"277 ","pages":"Article 106648"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of ERA5 tropospheric parameters using GNSS data over Tashkent\",\"authors\":\"H.E. Eshkuvatov , Sh.N. Mardonov , O.V. Xudoynazarov , Z.J. Ruziev , Sh.Sh. Numonjonov , J.R. Hoshimov , F.X. Asatullayev , I.M. Egamberdiev , M.A. Musurmonov\",\"doi\":\"10.1016/j.jastp.2025.106648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Remote sensing of atmospheric water vapor using Global Navigation Satellite System (GNSS) signals has become an important technique in meteorology, weather forecasting, and climate research. This study investigated regional atmospheric variability over Tashkent, Uzbekistan, by analyzing ten key atmospheric parameters from the ERA5 reanalysis and retrieving precipitable water vapor (PW) from GNSS-derived tropospheric delay data. The analysis covered the period from 12 to 22 February 2025 (day of year 43–53), using ground-based observations from the Tashkent (TASH) and Maidantal (MTAL) GNSS stations. The primary aim was to enhance the characterization of regional atmospheric dynamics and to evaluate the potential of GNSS-derived PW for improving precipitation forecasting when combined with reanalysis data. The results revealed a strong correlation between GNSS-derived and ERA5-derived PW values, indicating that GNSS tropospheric delay observations reliably capture short-term variations in atmospheric water vapor. These findings confirm the utility of integrating GNSS retrievals with reanalysis products for high-resolution monitoring of atmospheric processes in Central Asia.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"277 \",\"pages\":\"Article 106648\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682625002329\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625002329","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Estimation of ERA5 tropospheric parameters using GNSS data over Tashkent
Remote sensing of atmospheric water vapor using Global Navigation Satellite System (GNSS) signals has become an important technique in meteorology, weather forecasting, and climate research. This study investigated regional atmospheric variability over Tashkent, Uzbekistan, by analyzing ten key atmospheric parameters from the ERA5 reanalysis and retrieving precipitable water vapor (PW) from GNSS-derived tropospheric delay data. The analysis covered the period from 12 to 22 February 2025 (day of year 43–53), using ground-based observations from the Tashkent (TASH) and Maidantal (MTAL) GNSS stations. The primary aim was to enhance the characterization of regional atmospheric dynamics and to evaluate the potential of GNSS-derived PW for improving precipitation forecasting when combined with reanalysis data. The results revealed a strong correlation between GNSS-derived and ERA5-derived PW values, indicating that GNSS tropospheric delay observations reliably capture short-term variations in atmospheric water vapor. These findings confirm the utility of integrating GNSS retrievals with reanalysis products for high-resolution monitoring of atmospheric processes in Central Asia.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.