{"title":"Semantic units: organizing knowledge graphs into semantically meaningful units of representation.","authors":"Lars Vogt, Tobias Kuhn, Robert Hoehndorf","doi":"10.1186/s13326-024-00310-5","DOIUrl":"10.1186/s13326-024-00310-5","url":null,"abstract":"<p><strong>Background: </strong>In today's landscape of data management, the importance of knowledge graphs and ontologies is escalating as critical mechanisms aligned with the FAIR Guiding Principles-ensuring data and metadata are Findable, Accessible, Interoperable, and Reusable. We discuss three challenges that may hinder the effective exploitation of the full potential of FAIR knowledge graphs.</p><p><strong>Results: </strong>We introduce \"semantic units\" as a conceptual solution, although currently exemplified only in a limited prototype. Semantic units structure a knowledge graph into identifiable and semantically meaningful subgraphs by adding another layer of triples on top of the conventional data layer. Semantic units and their subgraphs are represented by their own resource that instantiates a corresponding semantic unit class. We distinguish statement and compound units as basic categories of semantic units. A statement unit is the smallest, independent proposition that is semantically meaningful for a human reader. Depending on the relation of its underlying proposition, it consists of one or more triples. Organizing a knowledge graph into statement units results in a partition of the graph, with each triple belonging to exactly one statement unit. A compound unit, on the other hand, is a semantically meaningful collection of statement and compound units that form larger subgraphs. Some semantic units organize the graph into different levels of representational granularity, others orthogonally into different types of granularity trees or different frames of reference, structuring and organizing the knowledge graph into partially overlapping, partially enclosed subgraphs, each of which can be referenced by its own resource.</p><p><strong>Conclusions: </strong>Semantic units, applicable in RDF/OWL and labeled property graphs, offer support for making statements about statements and facilitate graph-alignment, subgraph-matching, knowledge graph profiling, and for management of access restrictions to sensitive data. Additionally, we argue that organizing the graph into semantic units promotes the differentiation of ontological and discursive information, and that it also supports the differentiation of multiple frames of reference within the graph.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"7"},"PeriodicalIF":1.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rashmie Abeysinghe, Fengbo Zheng, Jay Shi, Samden D. Lhatoo, Licong Cui
{"title":"Leveraging logical definitions and lexical features to detect missing IS-A relations in biomedical terminologies","authors":"Rashmie Abeysinghe, Fengbo Zheng, Jay Shi, Samden D. Lhatoo, Licong Cui","doi":"10.1186/s13326-024-00309-y","DOIUrl":"https://doi.org/10.1186/s13326-024-00309-y","url":null,"abstract":"Biomedical terminologies play a vital role in managing biomedical data. Missing IS-A relations in a biomedical terminology could be detrimental to its downstream usages. In this paper, we investigate an approach combining logical definitions and lexical features to discover missing IS-A relations in two biomedical terminologies: SNOMED CT and the National Cancer Institute (NCI) thesaurus. The method is applied to unrelated concept-pairs within non-lattice subgraphs: graph fragments within a terminology likely to contain various inconsistencies. Our approach first compares whether the logical definition of a concept is more general than that of the other concept. Then, we check whether the lexical features of the concept are contained in those of the other concept. If both constraints are satisfied, we suggest a potentially missing IS-A relation between the two concepts. The method identified 982 potential missing IS-A relations for SNOMED CT and 100 for NCI thesaurus. In order to assess the efficacy of our approach, a random sample of results belonging to the “Clinical Findings” and “Procedure” subhierarchies of SNOMED CT and results belonging to the “Drug, Food, Chemical or Biomedical Material” subhierarchy of the NCI thesaurus were evaluated by domain experts. The evaluation results revealed that 118 out of 150 suggestions are valid for SNOMED CT and 17 out of 20 are valid for NCI thesaurus.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel N. Sosa, Georgiana Neculae, Julien Fauqueur, Russ B. Altman
{"title":"Elucidating the semantics-topology trade-off for knowledge inference-based pharmacological discovery","authors":"Daniel N. Sosa, Georgiana Neculae, Julien Fauqueur, Russ B. Altman","doi":"10.1186/s13326-024-00308-z","DOIUrl":"https://doi.org/10.1186/s13326-024-00308-z","url":null,"abstract":"Leveraging AI for synthesizing the deluge of biomedical knowledge has great potential for pharmacological discovery with applications including developing new therapeutics for untreated diseases and repurposing drugs as emergent pandemic treatments. Creating knowledge graph representations of interacting drugs, diseases, genes, and proteins enables discovery via embedding-based ML approaches and link prediction. Previously, it has been shown that these predictive methods are susceptible to biases from network structure, namely that they are driven not by discovering nuanced biological understanding of mechanisms, but based on high-degree hub nodes. In this work, we study the confounding effect of network topology on biological relation semantics by creating an experimental pipeline of knowledge graph semantic and topological perturbations. We show that the drop in drug repurposing performance from ablating meaningful semantics increases by 21% and 38% when mitigating topological bias in two networks. We demonstrate that new methods for representing knowledge and inferring new knowledge must be developed for making use of biomedical semantics for pharmacological innovation, and we suggest fruitful avenues for their development.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"61 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrien Bibal, Nourah M. Salem, Rémi Cardon, Elizabeth K. White, Daniel E. Acuna, Robin Burke, Lawrence E. Hunter
{"title":"RecSOI: recommending research directions using statements of ignorance","authors":"Adrien Bibal, Nourah M. Salem, Rémi Cardon, Elizabeth K. White, Daniel E. Acuna, Robin Burke, Lawrence E. Hunter","doi":"10.1186/s13326-024-00304-3","DOIUrl":"https://doi.org/10.1186/s13326-024-00304-3","url":null,"abstract":"The more science advances, the more questions are asked. This compounding growth can make it difficult to keep up with current research directions. Furthermore, this difficulty is exacerbated for junior researchers who enter fields with already large bases of potentially fruitful research avenues. In this paper, we propose a novel task and a recommender system for research directions, RecSOI, that draws from statements of ignorance (SOIs) found in the research literature. By building researchers’ profiles based on textual elements, RecSOI generates personalized recommendations of potential research directions tailored to their interests. In addition, RecSOI provides context for the recommended SOIs, so that users can quickly evaluate how relevant the research direction is for them. In this paper, we provide an overview of RecSOI’s functioning, implementation, and evaluation, demonstrating its effectiveness in guiding researchers through the vast landscape of potential research directions.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"32 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enriching the FIDEO ontology with food-drug interactions from online knowledge sources.","authors":"Rabia Azzi, Georgeta Bordea, Romain Griffier, Jean Noël Nikiema, Fleur Mougin","doi":"10.1186/s13326-024-00302-5","DOIUrl":"10.1186/s13326-024-00302-5","url":null,"abstract":"<p><p>The increasing number of articles on adverse interactions that may occur when specific foods are consumed with certain drugs makes it difficult to keep up with the latest findings. Conflicting information is available in the scientific literature and specialized knowledge bases because interactions are described in an unstructured or semi-structured format. The FIDEO ontology aims to integrate and represent information about food-drug interactions in a structured way. This article reports on the new version of this ontology in which more than 1700 interactions are integrated from two online resources: DrugBank and Hedrine. These food-drug interactions have been represented in FIDEO in the form of precompiled concepts, each of which specifies both the food and the drug involved. Additionally, competency questions that can be answered are reviewed, and avenues for further enrichment are discussed.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"1"},"PeriodicalIF":1.9,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
César H. Bernabé, Núria Queralt-Rosinach, Vítor E. Silva Souza, Luiz Olavo Bonino da Silva Santos, Barend Mons, Annika Jacobsen, Marco Roos
{"title":"The use of foundational ontologies in biomedical research","authors":"César H. Bernabé, Núria Queralt-Rosinach, Vítor E. Silva Souza, Luiz Olavo Bonino da Silva Santos, Barend Mons, Annika Jacobsen, Marco Roos","doi":"10.1186/s13326-023-00300-z","DOIUrl":"https://doi.org/10.1186/s13326-023-00300-z","url":null,"abstract":"The FAIR principles recommend the use of controlled vocabularies, such as ontologies, to define data and metadata concepts. Ontologies are currently modelled following different approaches, sometimes describing conflicting definitions of the same concepts, which can affect interoperability. To cope with that, prior literature suggests organising ontologies in levels, where domain specific (low-level) ontologies are grounded in domain independent high-level ontologies (i.e., foundational ontologies). In this level-based organisation, foundational ontologies work as translators of intended meaning, thus improving interoperability. Despite their considerable acceptance in biomedical research, there are very few studies testing foundational ontologies. This paper describes a systematic literature mapping that was conducted to understand how foundational ontologies are used in biomedical research and to find empirical evidence supporting their claimed (dis)advantages. From a set of 79 selected papers, we identified that foundational ontologies are used for several purposes: ontology construction, repair, mapping, and ontology-based data analysis. Foundational ontologies are claimed to improve interoperability, enhance reasoning, speed up ontology development and facilitate maintainability. The complexity of using foundational ontologies is the most commonly cited downside. Despite being used for several purposes, there were hardly any experiments (1 paper) testing the claims for or against the use of foundational ontologies. In the subset of 49 papers that describe the development of an ontology, it was observed a low adherence to ontology construction (16 papers) and ontology evaluation formal methods (4 papers). Our findings have two main implications. First, the lack of empirical evidence about the use of foundational ontologies indicates a need for evaluating the use of such artefacts in biomedical research. Second, the low adherence to formal methods illustrates how the field could benefit from a more systematic approach when dealing with the development and evaluation of ontologies. The understanding of how foundational ontologies are used in the biomedical field can drive future research towards the improvement of ontologies and, consequently, data FAIRness. The adoption of formal methods can impact the quality and sustainability of ontologies, and reusing these methods from other fields is encouraged.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"31 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Daza, Dimitrios Alivanistos, Payal Mitra, Thom Pijnenburg, Michael Cochez, Paul Groth
{"title":"BioBLP: a modular framework for learning on multimodal biomedical knowledge graphs","authors":"Daniel Daza, Dimitrios Alivanistos, Payal Mitra, Thom Pijnenburg, Michael Cochez, Paul Groth","doi":"10.1186/s13326-023-00301-y","DOIUrl":"https://doi.org/10.1186/s13326-023-00301-y","url":null,"abstract":"Knowledge graphs (KGs) are an important tool for representing complex relationships between entities in the biomedical domain. Several methods have been proposed for learning embeddings that can be used to predict new links in such graphs. Some methods ignore valuable attribute data associated with entities in biomedical KGs, such as protein sequences, or molecular graphs. Other works incorporate such data, but assume that entities can be represented with the same data modality. This is not always the case for biomedical KGs, where entities exhibit heterogeneous modalities that are central to their representation in the subject domain. We aim to understand how to incorporate multimodal data into biomedical KG embeddings, and analyze the resulting performance in comparison with traditional methods. We propose a modular framework for learning embeddings in KGs with entity attributes, that allows encoding attribute data of different modalities while also supporting entities with missing attributes. We additionally propose an efficient pretraining strategy for reducing the required training runtime. We train models using a biomedical KG containing approximately 2 million triples, and evaluate the performance of the resulting entity embeddings on the tasks of link prediction, and drug-protein interaction prediction, comparing against methods that do not take attribute data into account. In the standard link prediction evaluation, the proposed method results in competitive, yet lower performance than baselines that do not use attribute data. When evaluated in the task of drug-protein interaction prediction, the method compares favorably with the baselines. Further analyses show that incorporating attribute data does outperform baselines over entities below a certain node degree, comprising approximately 75% of the diseases in the graph. We also observe that optimizing attribute encoders is a challenging task that increases optimization costs. Our proposed pretraining strategy yields significantly higher performance while reducing the required training runtime. BioBLP allows to investigate different ways of incorporating multimodal biomedical data for learning representations in KGs. With a particular implementation, we find that incorporating attribute data does not consistently outperform baselines, but improvements are obtained on a comparatively large subset of entities below a specific node-degree. Our results indicate a potential for improved performance in scientific discovery tasks where understudied areas of the KG would benefit from link prediction methods.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"86 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138562929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing resolvability, parsability, and consistency of RDF resources: a use case in rare diseases.","authors":"Shuxin Zhang, Nirupama Benis, Ronald Cornet","doi":"10.1186/s13326-023-00299-3","DOIUrl":"10.1186/s13326-023-00299-3","url":null,"abstract":"<p><strong>Introduction: </strong>Healthcare data and the knowledge gleaned from it play a key role in improving the health of current and future patients. These knowledge sources are regularly represented as 'linked' resources based on the Resource Description Framework (RDF). Making resources 'linkable' to facilitate their interoperability is especially important in the rare-disease domain, where health resources are scattered and scarce. However, to benefit from using RDF, resources need to be of good quality. Based on existing metrics, we aim to assess the quality of RDF resources related to rare diseases and provide recommendations for their improvement.</p><p><strong>Methods: </strong>Sixteen resources of relevance for the rare-disease domain were selected: two schemas, three metadatasets, and eleven ontologies. These resources were tested on six objective metrics regarding resolvability, parsability, and consistency. Any URI that failed the test based on any of the six metrics was recorded as an error. The error count and percentage of each tested resource were recorded. The assessment results were represented in RDF, using the Data Quality Vocabulary schema.</p><p><strong>Results: </strong>For three out of the six metrics, the assessment revealed quality issues. Eleven resources have non-resolvable URIs with proportion to all URIs ranging from 0.1% (6/6,712) in the Anatomical Therapeutic Chemical Classification to 13.7% (17/124) in the WikiPathways Ontology; seven resources have undefined URIs; and two resources have incorrectly used properties of the 'owl:ObjectProperty' type. Individual errors were examined to generate suggestions for the development of high-quality RDF resources, including the tested resources.</p><p><strong>Conclusion: </strong>We assessed the resolvability, parsability, and consistency of RDF resources in the rare-disease domain, and determined the extent of these types of errors that potentially affect interoperability. The qualitative investigation on these errors reveals how they can be avoided. All findings serve as valuable input for the development of a guideline for creating high-quality RDF resources, thereby enhancing the interoperability of biomedical resources.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"19"},"PeriodicalIF":1.6,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph.","authors":"Gollam Rabby, Jennifer D'Souza, Allard Oelen, Lucie Dvorackova, Vojtěch Svátek, Sören Auer","doi":"10.1186/s13326-023-00298-4","DOIUrl":"10.1186/s13326-023-00298-4","url":null,"abstract":"<p><p>Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"18"},"PeriodicalIF":1.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138451554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elli Papadopoulou, Alessia Bardi, George Kakaletris, Diamadis Tziotzios, Paolo Manghi, Natalia Manola
{"title":"Data management plans as linked open data: exploiting ARGOS FAIR and machine actionable outputs in the OpenAIRE research graph.","authors":"Elli Papadopoulou, Alessia Bardi, George Kakaletris, Diamadis Tziotzios, Paolo Manghi, Natalia Manola","doi":"10.1186/s13326-023-00297-5","DOIUrl":"10.1186/s13326-023-00297-5","url":null,"abstract":"<p><strong>Background: </strong>Open Science Graphs (OSGs) are scientific knowledge graphs representing different entities of the research lifecycle (e.g. projects, people, research outcomes, institutions) and the relationships among them. They present a contextualized view of current research that supports discovery, re-use, reproducibility, monitoring, transparency and omni-comprehensive assessment. A Data Management Plan (DMP) contains information concerning both the research processes and the data collected, generated and/or re-used during a project's lifetime. Automated solutions and workflows that connect DMPs with the actual data and other contextual information (e.g., publications, fundings) are missing from the landscape. DMPs being submitted as deliverables also limit their findability. In an open and FAIR-enabling research ecosystem information linking between research processes and research outputs is essential. ARGOS tool for FAIR data management contributes to the OpenAIRE Research Graph (RG) and utilises its underlying services and trusted sources to progressively automate validation and automations of Research Data Management (RDM) practices.</p><p><strong>Results: </strong>A comparative analysis was conducted between the data models of ARGOS and OpenAIRE Research Graph against the DMP Common Standard. Following this, we extended ARGOS with export format converters and semantic tagging, and the OpenAIRE RG with a DMP entity and semantics between existing entities and relationships. This enabled the integration of ARGOS machine actionable DMPs (ma-DMPs) to the OpenAIRE OSG, enriching and exposing DMPs as FAIR outputs.</p><p><strong>Conclusions: </strong>This paper, to our knowledge, is the first to introduce exposing ma-DMPs in OSGs and making the link between OSGs and DMPs, introducing the latter as entities in the research lifecycle. Further, it provides insight to ARGOS DMP service interoperability practices and integrations to populate the OpenAIRE Research Graph with DMP entities and relationships and strengthen both FAIRness of outputs as well as information exchange in a standard way.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"17"},"PeriodicalIF":1.9,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71423853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}