Beata Fonferko-Shadrach, Huw Strafford, Carys Jones, Russell A. Khan, Sharon Brown, Jenny Edwards, Jonathan Hawken, Luke E. Shrimpton, Catharine P. White, Robert Powell, Inder M. S. Sawhney, William O. Pickrell, Arron S. Lacey
{"title":"Annotation of epilepsy clinic letters for natural language processing","authors":"Beata Fonferko-Shadrach, Huw Strafford, Carys Jones, Russell A. Khan, Sharon Brown, Jenny Edwards, Jonathan Hawken, Luke E. Shrimpton, Catharine P. White, Robert Powell, Inder M. S. Sawhney, William O. Pickrell, Arron S. Lacey","doi":"10.1186/s13326-024-00316-z","DOIUrl":"https://doi.org/10.1186/s13326-024-00316-z","url":null,"abstract":"Natural language processing (NLP) is increasingly being used to extract structured information from unstructured text to assist clinical decision-making and aid healthcare research. The availability of expert-annotated documents for the development and validation of NLP applications is limited. We created synthetic clinical documents to address this, and to validate the Extraction of Epilepsy Clinical Text version 2 (ExECTv2) NLP pipeline. We created 200 synthetic clinic letters based on hospital outpatient consultations with epilepsy specialists. The letters were double annotated by trained clinicians and researchers according to agreed guidelines. We used the annotation tool, Markup, with an epilepsy concept list based on the Unified Medical Language System ontology. All annotations were reviewed, and a gold standard set of annotations was agreed and used to validate the performance of ExECTv2. The overall inter-annotator agreement (IAA) between the two sets of annotations produced a per item F1 score of 0.73. Validating ExECTv2 using the gold standard gave an overall F1 score of 0.87 per item, and 0.90 per letter. The synthetic letters, annotations, and annotation guidelines have been made freely available. To our knowledge, this is the first publicly available set of annotated epilepsy clinic letters and guidelines that can be used for NLP researchers with minimum epilepsy knowledge. The IAA results show that clinical text annotation tasks are difficult and require a gold standard to be arranged by researcher consensus. The results for ExECTv2, our automated epilepsy NLP pipeline, extracted detailed epilepsy information from unstructured epilepsy letters with more accuracy than human annotators, further confirming the utility of NLP for clinical and research applications.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"36 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guglielmo Faggioli, Laura Menotti, Stefano Marchesin, Adriano Chió, Arianna Dagliati, Mamede de Carvalho, Marta Gromicho, Umberto Manera, Eleonora Tavazzi, Giorgio Maria Di Nunzio, Gianmaria Silvello, Nicola Ferro
{"title":"An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology.","authors":"Guglielmo Faggioli, Laura Menotti, Stefano Marchesin, Adriano Chió, Arianna Dagliati, Mamede de Carvalho, Marta Gromicho, Umberto Manera, Eleonora Tavazzi, Giorgio Maria Di Nunzio, Gianmaria Silvello, Nicola Ferro","doi":"10.1186/s13326-024-00317-y","DOIUrl":"10.1186/s13326-024-00317-y","url":null,"abstract":"<p><p>Automatic disease progression prediction models require large amounts of training data, which are seldom available, especially when it comes to rare diseases. A possible solution is to integrate data from different medical centres. Nevertheless, various centres often follow diverse data collection procedures and assign different semantics to collected data. Ontologies, used as schemas for interoperable knowledge bases, represent a state-of-the-art solution to homologate the semantics and foster data integration from various sources. This work presents the BrainTeaser Ontology (BTO), an ontology that models the clinical data associated with two brain-related rare diseases (ALS and MS) in a comprehensive and modular manner. BTO assists in organizing and standardizing the data collected during patient follow-up. It was created by harmonizing schemas currently used by multiple medical centers into a common ontology, following a bottom-up approach. As a result, BTO effectively addresses the practical data collection needs of various real-world situations and promotes data portability and interoperability. BTO captures various clinical occurrences, such as disease onset, symptoms, diagnostic and therapeutic procedures, and relapses, using an event-based approach. Developed in collaboration with medical partners and domain experts, BTO offers a holistic view of ALS and MS for supporting the representation of retrospective and prospective data. Furthermore, BTO adheres to Open Science and FAIR (Findable, Accessible, Interoperable, and Reusable) principles, making it a reliable framework for developing predictive tools to aid in medical decision-making and patient care. Although BTO is designed for ALS and MS, its modular structure makes it easily extendable to other brain-related diseases, showcasing its potential for broader applicability.Database URL https://zenodo.org/records/7886998 .</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"16"},"PeriodicalIF":1.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William D Duncan, Matthew Diller, Damion Dooley, William R Hogan, John Beverley
{"title":"Concretizing plan specifications as realizables within the OBO foundry.","authors":"William D Duncan, Matthew Diller, Damion Dooley, William R Hogan, John Beverley","doi":"10.1186/s13326-024-00315-0","DOIUrl":"10.1186/s13326-024-00315-0","url":null,"abstract":"<p><strong>Background: </strong>Within the Open Biological and Biomedical Ontology (OBO) Foundry, many ontologies represent the execution of a plan specification as a process in which a realizable entity that concretizes the plan specification, a \"realizable concretization\" (RC), is realized. This representation, which we call the \"RC-account\", provides a straightforward way to relate a plan specification to the entity that bears the realizable concretization and the process that realizes the realizable concretization. However, the adequacy of the RC-account has not been evaluated in the scientific literature. In this manuscript, we provide this evaluation and, thereby, give ontology developers sound reasons to use or not use the RC-account pattern.</p><p><strong>Results: </strong>Analysis of the RC-account reveals that it is not adequate for representing failed plans. If the realizable concretization is flawed in some way, it is unclear what (if any) relation holds between the realizable entity and the plan specification. If the execution (i.e., realization) of the realizable concretization fails to carry out the actions given in the plan specification, it is unclear under the RC-account how to directly relate the failed execution to the entity carrying out the instructions given in the plan specification. These issues are exacerbated in the presence of changing plans.</p><p><strong>Conclusions: </strong>We propose two solutions for representing failed plans. The first uses the Common Core Ontologies 'prescribed by' relation to connect a plan specification to the entity or process that utilizes the plan specification as a guide. The second, more complex, solution incorporates the process of creating a plan (in the sense of an intention to execute a plan specification) into the representation of executing plan specifications. We hypothesize that the first solution (i.e., use of 'prescribed by') is adequate for most situations. However, more research is needed to test this hypothesis as well as explore the other solutions presented in this manuscript.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"15"},"PeriodicalIF":1.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianfu Li, Yiming Li, Yuanyi Pan, Jinjing Guo, Zenan Sun, Fang Li, Yongqun He, Cui Tao
{"title":"Mapping vaccine names in clinical trials to vaccine ontology using cascaded fine-tuned domain-specific language models.","authors":"Jianfu Li, Yiming Li, Yuanyi Pan, Jinjing Guo, Zenan Sun, Fang Li, Yongqun He, Cui Tao","doi":"10.1186/s13326-024-00318-x","DOIUrl":"10.1186/s13326-024-00318-x","url":null,"abstract":"<p><strong>Background: </strong>Vaccines have revolutionized public health by providing protection against infectious diseases. They stimulate the immune system and generate memory cells to defend against targeted diseases. Clinical trials evaluate vaccine performance, including dosage, administration routes, and potential side effects.</p><p><strong>Clinicaltrials: </strong>gov is a valuable repository of clinical trial information, but the vaccine data in them lacks standardization, leading to challenges in automatic concept mapping, vaccine-related knowledge development, evidence-based decision-making, and vaccine surveillance.</p><p><strong>Results: </strong>In this study, we developed a cascaded framework that capitalized on multiple domain knowledge sources, including clinical trials, the Unified Medical Language System (UMLS), and the Vaccine Ontology (VO), to enhance the performance of domain-specific language models for automated mapping of VO from clinical trials. The Vaccine Ontology (VO) is a community-based ontology that was developed to promote vaccine data standardization, integration, and computer-assisted reasoning. Our methodology involved extracting and annotating data from various sources. We then performed pre-training on the PubMedBERT model, leading to the development of CTPubMedBERT. Subsequently, we enhanced CTPubMedBERT by incorporating SAPBERT, which was pretrained using the UMLS, resulting in CTPubMedBERT + SAPBERT. Further refinement was accomplished through fine-tuning using the Vaccine Ontology corpus and vaccine data from clinical trials, yielding the CTPubMedBERT + SAPBERT + VO model. Finally, we utilized a collection of pre-trained models, along with the weighted rule-based ensemble approach, to normalize the vaccine corpus and improve the accuracy of the process. The ranking process in concept normalization involves prioritizing and ordering potential concepts to identify the most suitable match for a given context. We conducted a ranking of the Top 10 concepts, and our experimental results demonstrate that our proposed cascaded framework consistently outperformed existing effective baselines on vaccine mapping, achieving 71.8% on top 1 candidate's accuracy and 90.0% on top 10 candidate's accuracy.</p><p><strong>Conclusion: </strong>This study provides a detailed insight into a cascaded framework of fine-tuned domain-specific language models improving mapping of VO from clinical trials. By effectively leveraging domain-specific information and applying weighted rule-based ensembles of different pre-trained BERT models, our framework can significantly enhance the mapping of VO from clinical trials.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"14"},"PeriodicalIF":1.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Mullin, Robert McDougal, Kei-Hoi Cheung, Halil Kilicoglu, Amanda Beck, Caroline J Zeiss
{"title":"Chemical entity normalization for successful translational development of Alzheimer's disease and dementia therapeutics.","authors":"Sarah Mullin, Robert McDougal, Kei-Hoi Cheung, Halil Kilicoglu, Amanda Beck, Caroline J Zeiss","doi":"10.1186/s13326-024-00314-1","DOIUrl":"10.1186/s13326-024-00314-1","url":null,"abstract":"<p><strong>Background: </strong>Identifying chemical mentions within the Alzheimer's and dementia literature can provide a powerful tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future downstream applications. We provide a reproducible hybrid approach that combines an ontology-enhanced PubMedBERT model for disambiguation with a dictionary-based method for candidate selection.</p><p><strong>Results: </strong>There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared to using only the dictionary-based approach with fuzzy-string matching for disambiguation. For the CRAFT corpus, our method outperformed baselines (maximum 78.4%) with a 91.17% accuracy. For our Alzheimer's and dementia cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal.</p><p><strong>Conclusion: </strong>Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer's and dementia.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"13"},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zheng, Xingxian Li, Anna Maria Masci, Hayleigh Kahn, Anthony Huffman, Eliyas Asfaw, Yuanyi Pan, Jinjing Guo, Virginia He, Justin Song, Andrey I Seleznev, Asiyah Yu Lin, Yongqun He
{"title":"Empowering standardization of cancer vaccines through ontology: enhanced modeling and data analysis.","authors":"Jie Zheng, Xingxian Li, Anna Maria Masci, Hayleigh Kahn, Anthony Huffman, Eliyas Asfaw, Yuanyi Pan, Jinjing Guo, Virginia He, Justin Song, Andrey I Seleznev, Asiyah Yu Lin, Yongqun He","doi":"10.1186/s13326-024-00312-3","DOIUrl":"10.1186/s13326-024-00312-3","url":null,"abstract":"<p><strong>Background: </strong>The exploration of cancer vaccines has yielded a multitude of studies, resulting in a diverse collection of information. The heterogeneity of cancer vaccine data significantly impedes effective integration and analysis. While CanVaxKB serves as a pioneering database for over 670 manually annotated cancer vaccines, it is important to distinguish that a database, on its own, does not offer the structured relationships and standardized definitions found in an ontology. Recognizing this, we expanded the Vaccine Ontology (VO) to include those cancer vaccines present in CanVaxKB that were not initially covered, enhancing VO's capacity to systematically define and interrelate cancer vaccines.</p><p><strong>Results: </strong>An ontology design pattern (ODP) was first developed and applied to semantically represent various cancer vaccines, capturing their associated entities and relations. By applying the ODP, we generated a cancer vaccine template in a tabular format and converted it into the RDF/OWL format for generation of cancer vaccine terms in the VO. '12MP vaccine' was used as an example of cancer vaccines to demonstrate the application of the ODP. VO also reuses reference ontology terms to represent entities such as cancer diseases and vaccine hosts. Description Logic (DL) and SPARQL query scripts were developed and used to query for cancer vaccines based on different vaccine's features and to demonstrate the versatility of the VO representation. Additionally, ontological modeling was applied to illustrate cancer vaccine related concepts and studies for in-depth cancer vaccine analysis. A cancer vaccine-specific VO view, referred to as \"CVO,\" was generated, and it contains 928 classes including 704 cancer vaccines. The CVO OWL file is publicly available on: http://purl.obolibrary.org/obo/vo/cvo.owl , for sharing and applications.</p><p><strong>Conclusion: </strong>To facilitate the standardization, integration, and analysis of cancer vaccine data, we expanded the Vaccine Ontology (VO) to systematically model and represent cancer vaccines. We also developed a pipeline to automate the inclusion of cancer vaccines and associated terms in the VO. This not only enriches the data's standardization and integration, but also leverages ontological modeling to deepen the analysis of cancer vaccine information, maximizing benefits for researchers and clinicians.</p><p><strong>Availability: </strong>The VO-cancer GitHub website is: https://github.com/vaccineontology/VO/tree/master/CVO .</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"12"},"PeriodicalIF":1.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdullateef I Almudaifer, Whitney Covington, JaMor Hairston, Zachary Deitch, Ankit Anand, Caleb M Carroll, Estera Crisan, William Bradford, Lauren A Walter, Ellen F Eaton, Sue S Feldman, John D Osborne
{"title":"Multi-task transfer learning for the prediction of entity modifiers in clinical text: application to opioid use disorder case detection.","authors":"Abdullateef I Almudaifer, Whitney Covington, JaMor Hairston, Zachary Deitch, Ankit Anand, Caleb M Carroll, Estera Crisan, William Bradford, Lauren A Walter, Ellen F Eaton, Sue S Feldman, John D Osborne","doi":"10.1186/s13326-024-00311-4","DOIUrl":"10.1186/s13326-024-00311-4","url":null,"abstract":"<p><strong>Background: </strong>The semantics of entities extracted from a clinical text can be dramatically altered by modifiers, including entity negation, uncertainty, conditionality, severity, and subject. Existing models for determining modifiers of clinical entities involve regular expression or features weights that are trained independently for each modifier.</p><p><strong>Methods: </strong>We develop and evaluate a multi-task transformer architecture design where modifiers are learned and predicted jointly using the publicly available SemEval 2015 Task 14 corpus and a new Opioid Use Disorder (OUD) data set that contains modifiers shared with SemEval as well as novel modifiers specific for OUD. We evaluate the effectiveness of our multi-task learning approach versus previously published systems and assess the feasibility of transfer learning for clinical entity modifiers when only a portion of clinical modifiers are shared.</p><p><strong>Results: </strong>Our approach achieved state-of-the-art results on the ShARe corpus from SemEval 2015 Task 14, showing an increase of 1.1% on weighted accuracy, 1.7% on unweighted accuracy, and 10% on micro F1 scores.</p><p><strong>Conclusions: </strong>We show that learned weights from our shared model can be effectively transferred to a new partially matched data set, validating the use of transfer learning for clinical text modifiers.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"11"},"PeriodicalIF":1.6,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Semantic units: organizing knowledge graphs into semantically meaningful units of representation.","authors":"Lars Vogt, Tobias Kuhn, Robert Hoehndorf","doi":"10.1186/s13326-024-00313-2","DOIUrl":"10.1186/s13326-024-00313-2","url":null,"abstract":"","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"10"},"PeriodicalIF":1.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathias De Brouwer, Pieter Bonte, Dörthe Arndt, Miel Vander Sande, Anastasia Dimou, Ruben Verborgh, Filip De Turck, Femke Ongenae
{"title":"Optimized continuous homecare provisioning through distributed data-driven semantic services and cross-organizational workflows.","authors":"Mathias De Brouwer, Pieter Bonte, Dörthe Arndt, Miel Vander Sande, Anastasia Dimou, Ruben Verborgh, Filip De Turck, Femke Ongenae","doi":"10.1186/s13326-024-00303-4","DOIUrl":"10.1186/s13326-024-00303-4","url":null,"abstract":"<p><strong>Background: </strong>In healthcare, an increasing collaboration can be noticed between different caregivers, especially considering the shift to homecare. To provide optimal patient care, efficient coordination of data and workflows between these different stakeholders is required. To achieve this, data should be exposed in a machine-interpretable, reusable manner. In addition, there is a need for smart, dynamic, personalized and performant services provided on top of this data. Flexible workflows should be defined that realize their desired functionality, adhere to use case specific quality constraints and improve coordination across stakeholders. User interfaces should allow configuring all of this in an easy, user-friendly way.</p><p><strong>Methods: </strong>A distributed, generic, cascading reasoning reference architecture can solve the presented challenges. It can be instantiated with existing tools built upon Semantic Web technologies that provide data-driven semantic services and constructing cross-organizational workflows. These tools include RMLStreamer to generate Linked Data, DIVIDE to adaptively manage contextually relevant local queries, Streaming MASSIF to deploy reusable services, AMADEUS to compose semantic workflows, and RMLEditor and Matey to configure rules to generate Linked Data.</p><p><strong>Results: </strong>A use case demonstrator is built on a scenario that focuses on personalized smart monitoring and cross-organizational treatment planning. The performance and usability of the demonstrator's implementation is evaluated. The former shows that the monitoring pipeline efficiently processes a stream of 14 observations per second: RMLStreamer maps JSON observations to RDF in 13.5 ms, a C-SPARQL query to generate fever alarms is executed on a window of 5 s in 26.4 ms, and Streaming MASSIF generates a smart notification for fever alarms based on severity and urgency in 1539.5 ms. DIVIDE derives the C-SPARQL queries in 7249.5 ms, while AMADEUS constructs a colon cancer treatment plan and performs conflict detection with it in 190.8 ms and 1335.7 ms, respectively.</p><p><strong>Conclusions: </strong>Existing tools built upon Semantic Web technologies can be leveraged to optimize continuous care provisioning. The evaluation of the building blocks on a realistic homecare monitoring use case demonstrates their applicability, usability and good performance. Further extending the available user interfaces for some tools is required to increase their adoption.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"9"},"PeriodicalIF":1.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Molinet, Santiago Marro, Elena Cabrio, Serena Villata
{"title":"Explanatory argumentation in natural language for correct and incorrect medical diagnoses.","authors":"Benjamin Molinet, Santiago Marro, Elena Cabrio, Serena Villata","doi":"10.1186/s13326-024-00306-1","DOIUrl":"10.1186/s13326-024-00306-1","url":null,"abstract":"<p><strong>Background: </strong>A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.</p><p><strong>Results: </strong>In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.</p><p><strong>Conclusions: </strong>Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"8"},"PeriodicalIF":1.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}