Journal of Applied Meteorology and Climatology最新文献

筛选
英文 中文
On the radar detection of cloud seeding effects in wintertime orographic cloud systems 冬季地形云系统中云种效应的雷达探测
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-25 DOI: 10.1175/jamc-d-22-0154.1
Troy J. Zaremba, Robert M. Rauber, Larry Di Girolamo, Jesse R. Loveridge, Greg M. McFarquhar
{"title":"On the radar detection of cloud seeding effects in wintertime orographic cloud systems","authors":"Troy J. Zaremba, Robert M. Rauber, Larry Di Girolamo, Jesse R. Loveridge, Greg M. McFarquhar","doi":"10.1175/jamc-d-22-0154.1","DOIUrl":"https://doi.org/10.1175/jamc-d-22-0154.1","url":null,"abstract":"Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: the Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5 dB change in equivalent reflectivity factor ( Z e ) is required to stand out against background natural Z e variability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 g m −3 to 1.214 g m −3 , and additional IWC introduced by seeding ranging from 0.012 g m −3 to 0.486 g m −3 . The upper limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally-produced precipitation.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"68 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135113188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamically Downscaled Projections of Phenological Changes across the Contiguous United States 美国相邻地区物候变化的动态缩小尺度预测
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-23 DOI: 10.1175/jamc-d-23-0071.1
Megan S. Mallard, Kevin D. Talgo, Tanya L. Spero, Jared H. Bowden, Christopher G. Nolte
{"title":"Dynamically Downscaled Projections of Phenological Changes across the Contiguous United States","authors":"Megan S. Mallard, Kevin D. Talgo, Tanya L. Spero, Jared H. Bowden, Christopher G. Nolte","doi":"10.1175/jamc-d-23-0071.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0071.1","url":null,"abstract":"Abstract Phenological indicators (PI) are used to study changes to animal and plant behavior in response to seasonal cycles, and they can be useful to quantify the potential impacts of climate change on ecosystems. Here, multiple global climate models and emission scenarios are used to drive dynamically downscaled simulations using the WRF model over the CONUS. The wintertime dormancy of plants (chilling units or “CU”), timing of spring onset (Extended Spring Indices or “SI”), and frequency of proceeding false springs are calculated from regional climate simulations covering historical (1995–2005) and future periods (2025–2100). Southern parts of the CONUS show projected CU decreases (inhibiting some plants from flowering or fruiting), while the northern CONUS experiences an increase (possibly causing plants to break dormancy too early, becoming vulnerable to disease or freezing). Spring advancement (earlier SI dates) is projected, with decadal trends ranging from approximately 1 to 4 days per decade over the CONUS, comparable to or exceeding those found in observational studies. Projected changes in risk of false spring (hard freezes following spring onset) vary across members of the ensemble and regions of the CONUS, but generally western parts of the CONUS are projected to experience increased risk of false springs. These projected changes to PI connote significant effects on cycles of plants, animals, and ecosystems, highlighting the importance of examining temperature changes during transitional seasons.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"20 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Framework for Spatio-Temporal Analysis of Temperature Profiles Applied to Europe 应用于欧洲的温度分布时空分析新框架
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-20 DOI: 10.1175/jamc-d-22-0205.1
S. Jamaer, D. Allaerts, J. Meyers, N. P. M. van Lipzig
{"title":"A Novel Framework for Spatio-Temporal Analysis of Temperature Profiles Applied to Europe","authors":"S. Jamaer, D. Allaerts, J. Meyers, N. P. M. van Lipzig","doi":"10.1175/jamc-d-22-0205.1","DOIUrl":"https://doi.org/10.1175/jamc-d-22-0205.1","url":null,"abstract":"Abstract Vertical temperature profiles influence the wind power generation of large offshore wind farms through stability-dependent effects such as blockage and gravity waves. However, numerical tools that are used to model these effects are often computationally too expensive to cover the large variety of atmospheric states occurring over time. Generally, an informed decision about which representative non-idealized situations to simulate is missing because of the lack of easily available information on representative vertical profiles, taking into account their spatio-temporal variability. Therefore, we present a novel framework that allows a smart selection of vertical temperature profiles. The framework consists of an improved analytical temperature model for the atmospheric boundary layer and lower troposphere, a subsequent clustering of these profiles to identify representatives, and lastly, a determination of areas with similar spatio-temporal characteristics of vertical profiles. When applying this framework on European ERA5 data, physically realistic representatives were identified for Europe, excluding the Mediterranean. Two or three profiles were found to be dominant for the open ocean, whereas more profiles prevail for land. Over the open ocean, weak temperature gradients in the boundary layer and a clear capping inversions are widespread, and stable profiles are absent except in the region of the East Icelandic current. Interestingly, according to the ERA5 data, at its resolution, coastal areas and seas surrounded by land behave more similar to the land areas than to the open ocean, implying that a larger set of model integrations are needed for these areas to obtain representative results for offshore wind power assessments compared to the open ocean.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135616726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flash Drought Indicator Inter-Comparison in the United States 美国突发性干旱指标间比较
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-13 DOI: 10.1175/jamc-d-23-0081.1
Trent W. Ford, Jason A. Otkin, Steven M. Quiring, Joel Lisonbee, Molly Woloszyn, Junming Wang, Yafang Zhong
{"title":"Flash Drought Indicator Inter-Comparison in the United States","authors":"Trent W. Ford, Jason A. Otkin, Steven M. Quiring, Joel Lisonbee, Molly Woloszyn, Junming Wang, Yafang Zhong","doi":"10.1175/jamc-d-23-0081.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0081.1","url":null,"abstract":"Abstract Increased flash drought awareness in recent years has motivated the development of numerous indicators for monitoring, early warning, and assessment. The flash drought indicators can act as a complementary set of tools by which to inform flash drought response and management. However, the limitations of each indicator much be measured and communicated between research and practitioners to ensure effectiveness. The limitations of any flash drought indicator are better understood and overcome through assessment of indicator sensitivity and consistency; however, such assessment cannot assume any single indicator properly represents the flash drought “truth”. To better understand the current state of flash drought monitoring, this study presents an inter-comparison of nine, widely used flash drought indicators. The indicators represent perspectives and processes that are known to drive flash drought, including evapotranspiration and evaporative demand, precipitation, and soil moisture. We find no single flash drought indicator consistently outperforms all others across the contiguous United States. We do find the evaporative demand- and evapotranspiration- driven indicators tend to lead precipitation- and soil moisture-based indicators in flash drought onset, but also tend to produce more flash drought events collectively. Overall, the regional and definition-specific variability in results supports the argument for a multi-indicator approach for flash drought monitoring, as advocated by recent studies. Furthermore, flash drought research – especially evaluation of historical and potential future changes in flash drought characteristics – should test multiple indicators, datasets, and methods for representing flash drought, and ideally employ a multi-indicator analysis frameworks over use of a single indicator from which to infer all flash drought information.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"256 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal use of radar radial winds in the HARMONIE numerical weather prediction system 雷达径向风在HARMONIE数值天气预报系统中的最佳应用
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-11 DOI: 10.1175/jamc-d-23-0013.1
Martin Ridal, Jana Sanchez-Arriola, Mats Dahlbom
{"title":"Optimal use of radar radial winds in the HARMONIE numerical weather prediction system","authors":"Martin Ridal, Jana Sanchez-Arriola, Mats Dahlbom","doi":"10.1175/jamc-d-23-0013.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0013.1","url":null,"abstract":"Abstract The use of radial velocity information from the European weather radar network is a challenging task, due to a rather heterogeneous radar network and the different ways of providing the Doppler velocity information. A preprocessing is therefore needed to harmonize the data. Radar observations consist of a very high resolution dataset which means that it is both demanding to process as well as that the inherent resolution is much higher than the model resolution. One way of reducing the amount of data is to create super observations (SO) by averaging observations in a predefined area. This paper describes the preprocessing necessary to use radar radial velocities in the data assimilation where the SO construction is included. The main focus is to optimize the use of radial velocities in the HARMONIE-AROME numerical weather model. Several experiments were run to find the best settings for first-guess check limits as well as a tuning of the observation error value. The optimal size of the SO and the corresponding thinning distance for radar radial velocities was also studied. It was found that the radial velocity information and the reflectivity from weather radars can be treated differently when it comes to the size of the SO and the thinning. A positive impact was found when adding the velocities together with the reflectivity using the same SO size and thinning distance, but the best results were found when the SO and thinning distance for the radial velocities are smaller compared to the corresponding values for reflectivity.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136097501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applicability of methods for inflow turbulence generation developed in a CFD field to the thermally driven convective boundary layer simulations 在CFD领域开发的流入湍流生成方法在热驱动对流边界层模拟中的适用性
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-06 DOI: 10.1175/jamc-d-23-0053.1
Takuto Sato, Hiroyuki Kusaka
{"title":"Applicability of methods for inflow turbulence generation developed in a CFD field to the thermally driven convective boundary layer simulations","authors":"Takuto Sato, Hiroyuki Kusaka","doi":"10.1175/jamc-d-23-0053.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0053.1","url":null,"abstract":"This study focuses on the application of two standard inflow turbulence generation methods for growing convective boundary layer (CBL) simulations: the recycle-rescale method (R-R method) and the digital filter-based (DF) methods, which are used in computational fluid dynamics. The primary objective of this study is to expand the applicability of the R-R method to simulations of thermally driven CBLs. This method is called the extended R-R method. However, in previous studies, the DF method has been extended to generate potential temperature perturbations. This study investigated whether the extended DF method can be applied to simulations of growing thermally driven CBLs. In this study, idealized simulations of growing thermally driven CBLs using the extended R-R and DF methods were performed. The results showed that both extended methods could capture the characteristics of thermally driven CBLs. The extended R-R method reproduced turbulence in thermally driven CBLs better than the extended DF method in spectrum and histogram of vertical wind speed. However, the height of the thermally driven CBL was underestimated in about 100m compared with the extended DF method. Sensitivity experiments were conducted on the parameters used in the extended DF and R-R methods. The results showed that underestimation of the length scale in the extended DF method causes a shortage of large-scale turbulence components. The other point suggested by the results of the sensitivity experiments is that the length of the driver region in the extended R-R method should be sufficient to reproduce the spanwise movement of the roll vortices.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Composited T-28 Hailstorm Penetration Dataset to Characterize Hail Properties within the Updraft and Downdraft Regions 利用T-28复合冰雹穿透数据集表征上升和下降气流区域的冰雹特性
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-03 DOI: 10.1175/jamc-d-23-0030.1
Andrew J. Heymsfield, Micael A. Cecchini, Andrew Detwiler, Ryan Honeyager, Paul Field
{"title":"Exploring the Composited T-28 Hailstorm Penetration Dataset to Characterize Hail Properties within the Updraft and Downdraft Regions","authors":"Andrew J. Heymsfield, Micael A. Cecchini, Andrew Detwiler, Ryan Honeyager, Paul Field","doi":"10.1175/jamc-d-23-0030.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0030.1","url":null,"abstract":"Abstract Measurements from the South Dakota School of Mines and Technology T-28 hail-penetrating aircraft are analyzed using recently developed data processing techniques with the goals of identifying where the large hail is found relative to vertical motion and improving the detection of hail microphysical properties from radar. Hail particle size distributions (PSD) and environmental conditions (temperature, relative humidity, liquid water content, air vertical velocity) were digitally collected by the T28 between 1995 and 2003 and synthesized by Detwiler et al. (2012). The PSD were forward-modeled by Cecchini et al. (2022) to simulate the radar reflectivity of the PSD at multiple radar wavelengths. The T-28 penetrated temperatures primarily between 0 and −10 °C. The largest hailstones were sampled near the updraft/downdraft interface. Liquid water contents were highest in the updraft cores, whereas total (liquid + frozen) water contents were highest near the updraft/downdraft interface. The fitted properties of the PSD, intercept and slope, are directly related to each other, but do not show any dependence on the region of the hailstorm where sampled. The PSD measurements and the radar reflectivity calculations at multiple radar wavelengths facilitated the development of relationships between the PSD bulk properties—hail kinetic energy and kinetic energy flux—and the radar reflectivity. Rather than using the oft-assumed sphericity and solid ice physical properties, actual measurements of hail properties are used in the analysis. Results from the maximum estimated size of hail (MESH) and vertical integrated liquid water (VIL) algorithms are evaluated based on this analysis.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMS Publications Support for Open, Transparent, and Equitable Research AMS出版物支持开放、透明和公平的研究
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-10-01 DOI: 10.1175/jamc-d-23-0164.1
Douglas Schuster, Michael Friedman
{"title":"AMS Publications Support for Open, Transparent, and Equitable Research","authors":"Douglas Schuster, Michael Friedman","doi":"10.1175/jamc-d-23-0164.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0164.1","url":null,"abstract":"© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136093108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impacts of grid spacing and station network on surface analyses and forecasts in Beijing Winter Olympic complex terrain 网格间距和台网对北京冬奥复杂地形地表分析预报的影响
3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-09-19 DOI: 10.1175/jamc-d-22-0187.1
Linye Song, Lu Yang, Conglan Cheng, Aru Hasi, Mingxuan Chen
{"title":"The impacts of grid spacing and station network on surface analyses and forecasts in Beijing Winter Olympic complex terrain","authors":"Linye Song, Lu Yang, Conglan Cheng, Aru Hasi, Mingxuan Chen","doi":"10.1175/jamc-d-22-0187.1","DOIUrl":"https://doi.org/10.1175/jamc-d-22-0187.1","url":null,"abstract":"Abstract This study investigates the impacts of grid spacing and station network on surface analyses and forecasts including temperature, humidity and winds in Beijing Winter Olympic complex terrain. The high-resolution analyses are generated by a rapid-refresh integrated system that includes a topographic downscaling procedure. Results show that surface analyses are more accurate with a higher targeted grid spacing. Particularly, the average analysis errors of surface temperature, humidity, and winds are all significantly reduced when the grid size is increased. This improvement is mainly attributed to a more realistic simulation of the topographic effects in the integrated system because the topographic downscaling at higher grid spacing can add more details in complex mountain region. From 1km to 100m, 1-12h forecasts of temperature and humidity are also largely improved, while the wind only show slight improvement for 1-6h forecasts. The influence of station network on the surface analyses is further examined. Results show that the spatial distributions of temperature and humidity at hundred-meter space scale are more realistic and accurate when adding an intensive automatic weather station network, as more observational information can be absorbed. The adding of station network can also reduce the forecast errors, which can last for about 6 hours. However, although surface winds display better analysis skill when adding more stations, the wind at the mountain top region sometimes encounter a marginally worse effect for both analysis and forecast. The results are helpful to improve the analysis and forecast products in complex terrain, and have some implications for downscaling from coarse grid size to a finer grid.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the efficacy of Monin-Obukhov and bulk Richardson surface-layer parameterizations over drylands 旱地上Monin-Obukhov和bulk Richardson表层参数化的有效性
IF 3 3区 地球科学
Journal of Applied Meteorology and Climatology Pub Date : 2023-09-08 DOI: 10.1175/jamc-d-23-0092.1
Temple R. Lee, Sandip Pal, Praveena Krishnan, Brian Hirth, M. Heuer, Tilden P. Meyers, Rick D. Saylor, John Schroeder
{"title":"On the efficacy of Monin-Obukhov and bulk Richardson surface-layer parameterizations over drylands","authors":"Temple R. Lee, Sandip Pal, Praveena Krishnan, Brian Hirth, M. Heuer, Tilden P. Meyers, Rick D. Saylor, John Schroeder","doi":"10.1175/jamc-d-23-0092.1","DOIUrl":"https://doi.org/10.1175/jamc-d-23-0092.1","url":null,"abstract":"\u0000Surface-layer parameterizations for heat, mass, momentum, and turbulence exchange are a critical component of the land surface models (LSMs) used in weather prediction and climate models. Although formulations derived from Monin-Obukhov Similarity Theory (MOST) have long been used, bulk Richardson (Rib) parameterizations have recently been suggested as a MOST alternative but have been evaluated over a limited number of land cover and climate types. Examining the parameterizations’ applicability over other regions, particularly drylands that cover approximately 41% of terrestrial land surfaces, is a critical step toward implementing the parameterizations into LSMs. One year (1 January through 31 December 2018) of eddy covariance measurements from a 10-m tower in southeastern Arizona and a 200-m tower in western Texas were used to determine how well the Rib parameterizations for friction velocity (u*), sensible heat flux (H), and turbulent kinetic energy (TKE) compare against MOST-derived parameterizations of these quantities. Independent of stability, wind speed regime, and season, the Rib u* and TKE parameterizations performed better than the MOST parameterizations, whereas MOST better represented H. Observations from the 200-m tower indicated that the parameterizations’ performance degraded as a function of height above ground. Overall, the Rib parameterizations revealed promising results, confirming better performance than traditional MOST relationships for kinematic (i.e., u*) and turbulence (i.e., TKE) quantities, although caution is needed when applying the H Rib parameterizations to drylands. These findings represent an important milestone for the use of Rib parameterizations, given the large fraction of Earth’s surface covered by drylands.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41761858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信