Osvaldo Salazar, Marcela Castro, Ranvir Singh, Helena Ponstein
{"title":"Evaluation of potential irrigation water savings by assessing the soil water balance in a vineyard in central Chile","authors":"Osvaldo Salazar, Marcela Castro, Ranvir Singh, Helena Ponstein","doi":"10.1002/ird.2980","DOIUrl":"https://doi.org/10.1002/ird.2980","url":null,"abstract":"<p>The main aim of this study was to evaluate the potential savings of irrigation water by assessing the soil water balance during the growing season in a wine vineyard in the Maule region, Chile. This study provides insights into the influences of different irrigation water applications on soil water status and its potential effects on grape yields, water use efficiency (WUE) and the cost of irrigation to help improve irrigation practices in the region and other similar Mediterranean regions. The field experiment compared three levels of irrigation water applied: current irrigation of the vineyard (T<sub>0</sub>) and two deficit irrigation treatments with reductions to 75% (T<sub>1</sub>) and 50% of the irrigated water (T<sub>2</sub>). The measurements included volumetric soil water content, shallow groundwater table, canopy cover and grape yield at harvest during the entire growing season (October 2017 to April 2018). We found a potential reduction of 25% or 50% in the current irrigation system while maintaining the grape yield, increasing the WUE and reducing the cost of irrigation. Consideration of the water stored in the soil by the accumulation of rainfall in the winter season and the potential for capillary rise of shallow groundwaters is crucial for adjusting irrigation to vine water requirements.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"74 1","pages":"316-331"},"PeriodicalIF":1.6,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2980","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the irrigation water productivity of rice farming: A study on sowing and irrigation practices in Pakistan","authors":"Ghani Akbar, Zafar Islam, Shahid Hameed Khalil, Zeeshan Wali","doi":"10.1002/ird.2981","DOIUrl":"10.1002/ird.2981","url":null,"abstract":"<p>In Pakistan's arid agricultural landscape, this 4-year (2020–2023) study on silty loam soil examined the relationships between sowing methods, irrigation practices, rice yield and water productivity. Using a randomized split block design, no tillage (NT) with alternate wetting and drying (AWD) and a furrow-irrigated narrow bed (NB) emerged as being consistently competitive, showing potential for sustainable rice cultivation. Key findings indicate that AWD significantly enhances water productivity (11–35%) and increases yield (2–10%) compared to conventional practices. Drip-irrigated wide beds (WBs) conserve substantial amounts of water (73%) but may compromise rice yield (4–47%). This study provides valuable insights into the dynamic outcomes and distinct performance trends of different rice varieties. The results suggest a potential maximum yield increase of 2–22% through optimized practices, and replacing rice may increase yield by 25–231%. Conversely, the selection of improper irrigation schedules and sowing methods for the given soil and crop conditions may lead to a yield reduction of up to 47% in high-yielding rice varieties. These findings may help to establish a foundation for further research investigating informed decision making for sowing and irrigation methods. The potential scalability of the identified technologies and further in-depth simulation strategies across diverse agroecological zones in Pakistan holds promise for widespread adoption, enhancing the sustainability of rice farming in the region.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"74 1","pages":"332-341"},"PeriodicalIF":1.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sevgi Saylak, Suat Irmak, Kent M. Eskridge, Ismail Dweikat
{"title":"Sunflower germplasms’ response to different water and salinity stress levels in greenhouse and field conditions under subsurface drip irrigation","authors":"Sevgi Saylak, Suat Irmak, Kent M. Eskridge, Ismail Dweikat","doi":"10.1002/ird.2977","DOIUrl":"10.1002/ird.2977","url":null,"abstract":"<p>Sunflower (<i>Helianthus annuus</i> L.) is moderately tolerant to salt and water stress, but its production can still be significantly and adversely affected by increases in these stressors as a result of the negative impacts of climate change on agricultural soil and crop productivity. The morphological and productivity (dry head weight, dry root weight, dry shoot weight, head diameter, whole seed weight, crude protein content, crude oil content, palmitic acid, stearic acid, oleic acid, linoleic acid, eicosanoic acid, 11-eicosenoic acid, homo-gamma-linolenic w6 acid, lignoceric acid and plant height) responses of modern sunflower germplasms to different levels of salt and drought stress under greenhouse and field conditions were investigated and analysed. Six germplasms were evaluated under three salt concentrations (0, 150 and 250 mM), and two germplasms were evaluated for drought response under three irrigation levels. Significant differences in the response of sunflower germplasms to water and salinity were detected. The same germplasms exhibited significant differences in response to water and salinity between the treatments, which also varied significantly between the germplasms for the same treatment. The irrigation level significantly influenced the amount of oil but not the crude protein or fatty acid composition. The results and information of this research can aid in selecting and improving sunflower productivity under adverse (i.e. saline and drought) conditions.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"74 1","pages":"161-181"},"PeriodicalIF":1.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2977","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huynh Vuong Thu Minh, Pankaj Kumar, Gowhar Meraj, Lam Van Thinh, Nigel K. Downes, Tran Van Ty, Nguyen Dinh Giang Nam, Fei Zhang, Bin Liu, Le Thien Hung, Dinh Van Duy, Tran Thi Truc Ly, Nguyen Quoc Luat, Ram Avtar, Mansour Almazroui
{"title":"Climate-driven runoff variability in semi-mountainous reservoirs of the Vietnamese Mekong Delta: Insights for sustainable water management","authors":"Huynh Vuong Thu Minh, Pankaj Kumar, Gowhar Meraj, Lam Van Thinh, Nigel K. Downes, Tran Van Ty, Nguyen Dinh Giang Nam, Fei Zhang, Bin Liu, Le Thien Hung, Dinh Van Duy, Tran Thi Truc Ly, Nguyen Quoc Luat, Ram Avtar, Mansour Almazroui","doi":"10.1002/ird.2968","DOIUrl":"10.1002/ird.2968","url":null,"abstract":"<p>The Mekong Delta, South East Asia's ‘rice bowl’, sustains more than 18 million people through its agricultural output. This yield is secured by efficient water management systems but is susceptible to climatic changes. As Vietnam's policies aim to optimize the delta's semi-mountainous regions reliant on rain-fed agriculture, this study investigates drought risks and climate change impacts on runoff in the O Ta Soc and O Tuk Sa reservoirs, An Giang Province, Vietnam. Using simulation models, we determined runoff volumes for specific rainfall return periods and climate scenarios for the 2030s and 2050s. Using the storm water management model (SWMM), we simulated the reservoir water balance considering rainfall, evaporation and infiltration. Our findings suggest potentially increased runoff and reservoir storage due to intensified monsoons and reduced off-season rainfall. The 4.77 km<sup>2</sup> drainage of the O Ta Soc reservoir could benefit from this, while the 2.55 km<sup>2</sup> drainage of the O Tuk Sa watershed may require alternative water-sourcing strategies. This research offers insights for drought predictions, flood management and water strategies in An Giang. To refine these predictions, future research should consider upcoming rainfall patterns.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1633-1653"},"PeriodicalIF":1.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of institutional diversity in sustainable water use: Performance comparison among water user organizations","authors":"Süheyla Ağizan, Zeki Bayramoğlu, Kemalettin Ağizan, Merve Bozdemir","doi":"10.1002/ird.2976","DOIUrl":"10.1002/ird.2976","url":null,"abstract":"<p>The aim of this study was to compare the performance of water user organizations (WUOs) in the agricultural sector in terms of their managerial efficiency. A survey was carried out across the study area to evaluate 67 WUOs, including irrigation cooperatives, municipalities, village legal entities (VLEs) and water user associations (WUAs). The findings were then used to create a management performance index. It has been determined that municipalities excel in terms of physical performance, irrigation cooperatives in enterprise and social performance and WUAs in institutional and investment performance. The general management performance index revealed that the most successful WUOs in the Konya closed basin were WUAs. Therefore, proposals have been put forward to begin institutionalization processes in other institutions to attain the successful institutionalization in WUAs. Additionally, the shift towards prepaid systems is recommended to mitigate collection problems, while water should be priced according to the full cost method. Finally, supporting the use of alternative energy sources for irrigation is crucial.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1520-1535"},"PeriodicalIF":1.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2976","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes in potential evaporation with the extension of water-saving irrigation in Xinjiang, north-western China","authors":"Songjun Han, Mengzhi Ren, Dengfeng Liu, Congying Han, Fuqiang Tian, Baozhong Zhang","doi":"10.1002/ird.2975","DOIUrl":"10.1002/ird.2975","url":null,"abstract":"<p>Since the late 1990s, the irrigation quota in Xinjiang, northwestern China has witnessed a decline, owing to the widespread adoption of highly efficient water-saving irrigation technologies. This phenomenon prompts the question: has there been a corresponding impact on potential evaporation? To explore changes in potential evaporation resulting from irrigation advances, we conducted a comprehensive analysis spanning the years 1978–2017 in Xinjiang. Our investigation focused on a pairwise examination of agricultural stations with substantial irrigation effects, enveloped by a substantial proportion of cultivated land, and reference stations with negligible irrigation effects, surrounded by a comparatively smaller proportion of cultivated land. The findings unveiled a noteworthy reduction in potential evaporation at agricultural stations during the period 1978–1997. However, a contrasting trend emerged in the subsequent period of 1998–2017, wherein there was a significant increase in potential evaporation. In contrast, reference stations did not exhibit statistically significant reversals in potential evaporation. The observed changes in potential evaporation at agricultural stations were primarily attributed to shifts in aerodynamic components. These changes were closely associated with the reversed changes in irrigation intensity, a consequence of the widespread adoption of water-saving irrigation practices since 1998.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 5","pages":"1913-1923"},"PeriodicalIF":1.6,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagation process-based agricultural drought typology and its copula-based risk","authors":"Liang Li, Jiangzhou Liu, Qing Peng, Xiaowen Wang, Jiatun Xu, Huanjie Cai","doi":"10.1002/ird.2966","DOIUrl":"10.1002/ird.2966","url":null,"abstract":"<p>Determining the risks associated with different drought event types can be beneficial for related scientific research and management strategies. In this study, we proposed an agricultural drought event pair and typology based on the governing drought propagation processes in the Yellow River basin at the catchment scale. In total, seven agricultural drought event pairs were distinguished, namely single meteorological drought event pair (MDonly), single soil moisture drought event pair (SDonly), single agricultural drought event pair (ADonly), soil moisture and meteorological drought event pair (SDMD), agricultural and meteorological drought event pair (ADMD), agricultural and soil moisture drought event pair (ADSD) and agricultural, soil moisture and meteorological drought event pair (ASMD). The SDMD and ADMD events had the highest copula-based risk probabilities with the shortest joint return periods. Six agricultural drought types were distinguished in this study, namely classical rainfall deficit, rain-to-snow-season, wet-to-dry-season, cold snow season, warm snow season and composite drought events. The classical rainfall deficit, wet-to-dry season and composite drought events were the major agricultural drought types in the Yellow River basin. The agricultural drought typology results of the present study provide a comprehensive understanding of drought propagation and improvement of drought forecasting and management.</p><p>La détermination des risques associés aux différents types d'événements de sécheresse peut être bénéfique à la recherche scientifique et aux stratégies de gestion connexes. Dans cette étude, nous avons proposé une paire d'événement de sécheresse agricole et une typologie basée sur les processus de propagation de la sécheresse dans le bassin du fleuve jaune à l'échelle du bassin versant. Au total, sept paires d'évènements de sécheresse agricole ont été distinguées, soit une paire d'évènements de sécheresse météorologique (MD uniquement), une paire d'évènements de sécheresse liée à l'humidité du sol (SD uniquement), une paire d'évènements de sécheresse agricole (AD uniquement), une paire d'évènements d'humidité du sol et d'évènements de sécheresse météorologique (SDMD), une paire d'évènements de sécheresse agricole et météorologique (ADMD), une paire d'évènements de sécheresse agricole et d'humidité du sol (ADSD) et une paire d'évènements de sécheresse agricole, d'humidité du sol et météorologique (ASMD). Les événements SDMD et ADMD présentaient les probabilités de risque fondées sur la copule les plus élevées et les périodes de retour interarmées les plus courtes. Six types de sécheresse agricole ont été distingués dans cette étude, à savoir le déficit de pluie classique, la saison de la pluie à la neige, la saison de la pluie à la saison sèche, la saison de la neige froide, la saison de la neige chaude et les épisodes composites de sécheresse. Le déficit de précipitations classique, la saison humide à la saison sèche ","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1496-1519"},"PeriodicalIF":1.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael van der Laan, Seija Virtanen, Yutaka Matsuno, Giulio Castelli, Aynur Fayrap, Richard Cresswell, M.K. Hsieh
{"title":"Ecosystem services of irrigated and controlled drainage agricultural systems: A contemporary global perspective","authors":"Michael van der Laan, Seija Virtanen, Yutaka Matsuno, Giulio Castelli, Aynur Fayrap, Richard Cresswell, M.K. Hsieh","doi":"10.1002/ird.2974","DOIUrl":"10.1002/ird.2974","url":null,"abstract":"<p>Irrigated agriculture provides 40% of the world's crop-based foods but often with a negative impact on the environment. It is important to recognize that in addition to providing food and fibre, irrigation and controlled drainage systems can be optimized to provide additional ecosystem services and mitigate climate change by using resources in a more efficient way. Contemporary case studies were identified from around the world, including flood control by paddy fields in Japan, water quality enhancement and wastewater reuse in South Africa and Taiwan, micro-/meso-climate regulation in Ethiopia and Japan, controlled drainage and sub-irrigation to maximize carbon sequestration and minimize leaching in Finland, and groundwater table management to reduce irrigation water and pumping requirements in Turkey. Irrigation infrastructure, such as rice paddy terraced landscapes (Japan) and large dams and canals (Australia), have also achieved notable additional ecotourism job creation. Case studies were analysed in terms of funding opportunities and compared using the Common International Classification of Ecosystem Services system. It is recommended that planning frameworks be developed that seek to optimize ecosystem services such as the ones discussed above. Policy should be updated to recognize these services and provide incentives to irrigators and water management entities accordingly.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 5","pages":"1823-1837"},"PeriodicalIF":1.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2974","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tackling water scarcity in agriculture—Asian Development Bank's perspective","authors":"Kenichi Yokoyama","doi":"10.1002/ird.2978","DOIUrl":"10.1002/ird.2978","url":null,"abstract":"<p>‘Tackling water scarcity in agriculture’, which is the theme of the 25th Congress of the International Commission on Irrigation and Drainage (ICID), is at the crux of the global challenge of ensuring a climate-resilient and water- and food-secure world for future generations. The Asian region faces significant threats due to its high vulnerability to climate change impacts and growing food insecurity and water stress across many river basins. The Asian Development Bank (ADB) is stepping up assistance in line with the international commitments by the multilateral financial institutions. There are significant opportunities that are tapped to address this theme, including (i) exploring and replicating highly successful experiences of enhancing irrigated agriculture productivity manifold as seen in the Indian states of Chhattisgarh, Karnataka and Madhya Pradesh and in other South Asian countries; (ii) reinvigorating efforts to operationalize integrated water resources management in river basins; (iii) adopting new technologies, such as remote sensing and automation, and digital technologies, including artificial intelligence; and (iv) pursuing institutional and financing innovations. Resources of ADB and other multilateral institutions can be utilized to develop and demonstrate successful innovations before they are replicated by the own sources of the developing countries.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 5","pages":"1717-1722"},"PeriodicalIF":1.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating yield stability and predicting the response of sesame genotypes to climate change using the SALTMED model","authors":"Hani Mehanna, Ayman Saber, Ghada Samaha, Mahmod Abd El-Aziz, Ragab Ragab","doi":"10.1002/ird.2970","DOIUrl":"10.1002/ird.2970","url":null,"abstract":"<p>Climate change (CC) could lead to many crises. Therefore, increasing the number of cultivated varieties represents a low-cost factor in confronting this problem. The effect of the genotype × environment (G × E) interaction on yield stability was estimated for 28 new sesame lines in the Beni Suwef, El-Beheira and El-Menoufia governorates in Egypt across 15 environments from 2019 to 2022 using AMMI analysis. The SALTMED model was used to predict the yield of sesame plants under five increasing air temperature scenarios (CC factor) to obtain future projections of sesame yield to determine the lines that are most genetically stable and facing CC. Variance analysis revealed significant differences in yield between the G and E groups and between the G × E interaction group. Fifteen genotypes yielded better control, and C6.4, C5.8 and C9.6 were selected as genetically stable according to AMMI analysis. The SALTMED model predicted that the yields of lines C3.8 and C6.2 were not affected under the high-temperature scenarios across the three governorates, moreover lines C1.8, C2.3, and, C6.12 productions were not affected under Beni Suwef and El-Beheira governorates. of lines C1.8, C2.3 and C6.12 were also not affected by the Beni Suwef or El-Beheira governorates. It is now possible to establish a hybridization programme in sesame that combines parents with high productivity and high resilience to CC.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1483-1495"},"PeriodicalIF":1.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}