JACS AuPub Date : 2024-08-12DOI: 10.1021/jacsau.4c00488
Yizhen Wang, Zihan Lin, Runhai Ouyang, Bin Jiang, Igor Ying Zhang, Xin Xu
{"title":"Toward Efficient and Unified Treatment of Static and Dynamic Correlations in Generalized Kohn–Sham Density Functional Theory","authors":"Yizhen Wang, Zihan Lin, Runhai Ouyang, Bin Jiang, Igor Ying Zhang, Xin Xu","doi":"10.1021/jacsau.4c00488","DOIUrl":"https://doi.org/10.1021/jacsau.4c00488","url":null,"abstract":"Accurate description of the static correlation poses a persistent challenge in electronic structure theory, particularly when it has to be concurrently considered with the dynamic correlation. We develop here a method in the generalized Kohn–Sham density functional theory (DFT) framework, named R-xDH7-SCC15, which achieves an unprecedented accuracy in capturing the static correlation, while maintaining a good description of the dynamic correlation on par with the state-of-the-art DFT and wave function theory methods, all grounded in the same single-reference black-box methodology. Central to R-xDH7-SCC15 is a general-purpose static correlation correction (SCC) model applied to the renormalized XYG3-type doubly hybrid method (R-xDH7). The SCC model development involves a hybrid machine learning strategy that integrates symbolic regression with nonlinear parameter optimization, aiming to achieve a balance between generalization capability, numerical accuracy, and interpretability. Extensive benchmark studies confirm the robustness and broad applicability of R-xDH7-SCC15 across a diverse array of main-group chemical scenarios. Notably, it displays exceptional aptitude in accurately characterizing intricate reaction kinetics and dynamic processes in regions distant from equilibrium, where the influence of static correlation is most profound. Its capability to consistently and efficiently predict the whole energy profiles, activation barriers, and reaction pathways within a user-friendly “black-box” framework represents an important advance in the field of electronic structure theory.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-12DOI: 10.1021/jacsau.4c00485
Weibin Liang, Sisi Zheng, Ying Shu, Jun Huang
{"title":"Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation Efficiency and Bioactivity","authors":"Weibin Liang, Sisi Zheng, Ying Shu, Jun Huang","doi":"10.1021/jacsau.4c00485","DOIUrl":"https://doi.org/10.1021/jacsau.4c00485","url":null,"abstract":"In this study, we present the first example of using a machine learning (ML)-assisted design strategy to optimize the synthesis formulation of enzyme/ZIFs (zeolitic imidazolate framework) for enhanced performance. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were chosen as model enzymes, while Zn(eIM)<sub>2</sub> (eIM = 2-ethylimidazolate) was selected as the model ZIF to test our ML-assisted workflow paradigm. Through an iterative ML-driven training-design-synthesis-measurement workflow, we efficiently discovered GOx/ZIF (G151) and HRP/ZIF (H150) with their overall performance index (OPI) values (OPI represents the product of encapsulation efficiency (<i>E</i> in %), retained enzymatic activity (<i>A</i> in %), and thermal stability (<i>T</i> in %)) at least 1.3 times higher than those in systematic seed data studies. Furthermore, advanced statistical methods derived from the trained random forest model qualitatively and quantitatively reveal the relationship among synthesis, structure, and performance in the enzyme/ZIF system, offering valuable guidance for future studies on enzyme/ZIFs. Overall, our proposed ML-assisted design strategy holds promise for accelerating the development of enzyme/ZIFs and other enzyme immobilization systems for biocatalysis applications and beyond, including drug delivery and sensing, among others.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-08DOI: 10.1021/jacsau.4c00527
Sebastian B. Beil, Sylvestre Bonnet, Carla Casadevall, R. Detz, Fabian Eisenreich, Starla D. Glover, Christoph Kerzig, Line Næsborg, Sonja Pullen, Golo Storch, Ning Wei, Cathleen Zeymer
{"title":"Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop","authors":"Sebastian B. Beil, Sylvestre Bonnet, Carla Casadevall, R. Detz, Fabian Eisenreich, Starla D. Glover, Christoph Kerzig, Line Næsborg, Sonja Pullen, Golo Storch, Ning Wei, Cathleen Zeymer","doi":"10.1021/jacsau.4c00527","DOIUrl":"https://doi.org/10.1021/jacsau.4c00527","url":null,"abstract":"","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"23 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-08DOI: 10.1021/jacsau.4c00292
Iván Cheng-Sánchez, Katherine A. Gosselé, Leonardo Palaferri, E. Laul, Gionata Riccabella, R. K. Bedi, Yaozong Li, Anna Müller, Ivan Corbeski, A. Caflisch, Cristina Nevado
{"title":"Structure-Based Design of CBP/EP300 Degraders: When Cooperativity Overcomes Affinity","authors":"Iván Cheng-Sánchez, Katherine A. Gosselé, Leonardo Palaferri, E. Laul, Gionata Riccabella, R. K. Bedi, Yaozong Li, Anna Müller, Ivan Corbeski, A. Caflisch, Cristina Nevado","doi":"10.1021/jacsau.4c00292","DOIUrl":"https://doi.org/10.1021/jacsau.4c00292","url":null,"abstract":"","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"76 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-07DOI: 10.1021/jacsau.4c00343
Lei Guo, Meek Yang, Bin Dong, Seth Lewman, Alex Van Horn, Shang Jia
{"title":"Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance","authors":"Lei Guo, Meek Yang, Bin Dong, Seth Lewman, Alex Van Horn, Shang Jia","doi":"10.1021/jacsau.4c00343","DOIUrl":"https://doi.org/10.1021/jacsau.4c00343","url":null,"abstract":"As a major family of red-shifted fluorophores that operate beyond visible light, polymethine dyes are pivotal in light-based biological techniques. However, methods for tuning this kind of fluorophores by structural modification remain restricted to bottom-up synthesis and modification using coupling or nucleophilic substitutions. In this study, we introduce a two-step, late-stage functionalization process for heptamethine dyes. This process enables the substitution of the central chlorine atom in the commonly used 4′-chloro heptamethine scaffold with various aryl groups using aryllithium reagents. This method borrows the building block and designs from the xanthene dye community and offers a mild and convenient way for the diversification of heptamethine fluorophores. Notably, this efficient conversion allows for the synthesis of heptamethine-X, the heptamethine scaffold with two ortho-substituents on the 4′-aryl modification, which brings enhanced stability and reduced aggregation to the fluorophore. We showcase the utility of this method by a facile synthesis of a fluorogenic, membrane-localizing fluorophore that outperforms its commercial counterparts with a significantly higher brightness and contrast. Overall, this method establishes the synthetic similarities between polymethine and xanthene fluorophores and provides a versatile and feasible toolbox for future optimizing heptamethine fluorophores for their biological applications.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-06DOI: 10.1021/jacsau.4c00326
Balázs Antalicz, Huib J. Bakker
{"title":"Temperature Effects and Activation Barriers in Aqueous Proton-Uptake Reactions","authors":"Balázs Antalicz, Huib J. Bakker","doi":"10.1021/jacsau.4c00326","DOIUrl":"https://doi.org/10.1021/jacsau.4c00326","url":null,"abstract":"Aqueous proton transfer reactions are fundamental in biology and chemistry, yet kinetics and mechanisms of strong base–weak acid reactions are not well understood. In this work, we present a temperature-dependent reaction kinetic study of the water-soluble photobase actinoquinol, in the presence and absence of succinimide, a weak acid reaction partner. We study the temperature dependence of the reaction and connect the observed dynamics to the reaction’s thermodynamics. We find that actinoquinol reacts in associated complexes with water/succinimide, creating an intermediate complex that can undergo either dissociation to create products, or reverse proton transfer within the complex to recreate the initial reactants. We find that the intermediates’ formation is energetically unfavorable with both reaction partners, which impacts the net reaction rates. We also find that the net reaction rate is additionally strongly influenced by the competition between the dissociation of the intermediates and their reverse reaction.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-08-05DOI: 10.1021/jacsau.4c00500
Shobhan Mondal, Benjamin Gunschera, Berit Olofsson
{"title":"Transition-Metal-Free C-Diarylations to Reach All-Carbon Quaternary Centers","authors":"Shobhan Mondal, Benjamin Gunschera, Berit Olofsson","doi":"10.1021/jacsau.4c00500","DOIUrl":"https://doi.org/10.1021/jacsau.4c00500","url":null,"abstract":"Herein, we disclose a convenient protocol for the α-diarylation of carbon nucleophiles to yield heavily functionalized quaternary products. Diaryliodonium salts are utilized to transfer both aryl groups under transition-metal-free conditions, which enables an atom-efficient and high-yielding method with broad functional group tolerance. The methodology is amenable to a wide variety of carbon nucleophiles and can be utilized in late-stage functionalization of complex arenes. Furthermore, it is compatible with a new class of zwitterionic iodonium reagents, which gives access to phenols with an <i>ortho</i>-quaternary center. The diarylated products bear an <i>ortho</i>-iodo substituent that can be utilized in further transformations, including the formation of novel, functionalized six-membered cyclic iodonium salts.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}