Islets最新文献

筛选
英文 中文
Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish. 靶向多胺生物合成刺激斑马鱼β细胞再生。
IF 2.2 4区 医学
Islets Pub Date : 2020-09-02 Epub Date: 2020-07-25 DOI: 10.1080/19382014.2020.1791530
Morgan A Robertson, Leah R Padgett, Jonathan A Fine, Gaurav Chopra, Teresa L Mastracci
{"title":"Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish.","authors":"Morgan A Robertson,&nbsp;Leah R Padgett,&nbsp;Jonathan A Fine,&nbsp;Gaurav Chopra,&nbsp;Teresa L Mastracci","doi":"10.1080/19382014.2020.1791530","DOIUrl":"https://doi.org/10.1080/19382014.2020.1791530","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 5","pages":"99-107"},"PeriodicalIF":2.2,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1791530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38195759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Melatonin protects INS-1 pancreatic β-cells from apoptosis and senescence induced by glucotoxicity and glucolipotoxicity. 褪黑素对糖毒性和糖脂毒性诱导的INS-1胰腺β-细胞凋亡和衰老具有保护作用。
IF 2.2 4区 医学
Islets Pub Date : 2020-07-03 Epub Date: 2020-07-16 DOI: 10.1080/19382014.2020.1783162
Yu Hee Lee, Hye Sook Jung, Min Jeong Kwon, Jung Eun Jang, Tae Nyun Kim, Soon Hee Lee, Mi-Kyung Kim, Jeong Hyun Park
{"title":"Melatonin protects INS-1 pancreatic β-cells from apoptosis and senescence induced by glucotoxicity and glucolipotoxicity.","authors":"Yu Hee Lee,&nbsp;Hye Sook Jung,&nbsp;Min Jeong Kwon,&nbsp;Jung Eun Jang,&nbsp;Tae Nyun Kim,&nbsp;Soon Hee Lee,&nbsp;Mi-Kyung Kim,&nbsp;Jeong Hyun Park","doi":"10.1080/19382014.2020.1783162","DOIUrl":"https://doi.org/10.1080/19382014.2020.1783162","url":null,"abstract":"<p><strong>Introduction: </strong>Melatonin is a hormone known as having very strong anti-oxidant property. Senescence is a biological state characterized by the loss of cell replication and the changes consisting of a pro-inflammatory phenotype, leading to Senescence Associated Secretory Phenotype (SASP) which is now regarded as one of the fundamental processes of many degenerative diseases. Increased cell division count induces cell senescence via DNA damage in response to elevated Reactive Oxygen Species (ROS). We wanted to test whether melatonin could reduce apoptosis and stress induced premature pancreatic β-cell senescence induced by glucotoxicity and glucolipotoxicity.</p><p><strong>Materials and method: </strong>Cultured rodent pancreatic β-cell line (INS-1 cell) was used. Glucotoxicity (HG: hyperglycemia) and glucolipotoxicity (HGP: hyperglycemia with palmitate) were induced by hyperglycemia and the addition of palmitate. The degrees of the senescence were measured by SA-β-Gal and P16<sup>lnk4A</sup> staining along with the changes of cell viabilities, cell cycle-related protein and gene expressions, endogenous anti-oxidant defense enzymes, and Glucose Stimulated Insulin Secretion (GSIS), before and after melatonin treatment.</p><p><strong>Results: </strong>Cultured INS-1 cells in HG and HGP conditions revealed accelerated senescence, increased apoptosis, cell cycle arrest, compromised endogenous anti-oxidant defense, and impaired glucose-stimulated insulin secretion. Melatonin decreased apoptosis and expressions of proteins related to senescence, increase the endogenous anti-oxidant defense, and improved glucose-stimulated insulin secretion.</p><p><strong>Conclusion: </strong>Melatonin protected pancreatic β-cell from apoptosis, decreased expressions of the markers related to the accelerated senescence, and improved the biological deteriorations induced by glucotoxicity and glucolipotoxicity.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 4","pages":"87-98"},"PeriodicalIF":2.2,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1783162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38158802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Characterization of a mouse model of islet transplantation using MIN-6 cells. 用MIN-6细胞建立小鼠胰岛移植模型。
IF 2.2 4区 医学
Islets Pub Date : 2020-07-03 Epub Date: 2020-06-22 DOI: 10.1080/19382014.2020.1763719
Douglas O Sobel, Barath Ramasubramanian, Larry Mitnaul
{"title":"Characterization of a mouse model of islet transplantation using MIN-6 cells.","authors":"Douglas O Sobel,&nbsp;Barath Ramasubramanian,&nbsp;Larry Mitnaul","doi":"10.1080/19382014.2020.1763719","DOIUrl":"https://doi.org/10.1080/19382014.2020.1763719","url":null,"abstract":"<p><p>Immortalized beta cells are an abundant source of insulin-producing cells. Although MIN-6 cells have similar characteristics as normal islets <i>in vitro</i>, the <i>in vivo</i> use of MIN-6 cells has not been fully described. This study characterizes <i>in vivo</i> mouse models of MIN-6 transplantation and rejection. Subcutaneous (<i>sc</i>) transplantation of MIN-6 cells in either Matrigel or HyStem-C hydrogels reduced blood sugars in nude mice and thus are good matrices for MIN-6 cells <i>in vivo</i>. NOD mice are good transplant recipients since they best rejected MIN-6 cells. MLR responses from BalbC, Black Webster, Swiss Black, C3H, and NOD mice correlated with mean blood glucose response suggesting the importance of allogeneic differences in the rejection of cells. Three days of cyclosporine administration caused no inhibition of MIN-6 cell rejection and 6 days resulted in a transient decrease in blood glucose, while daily administration inhibited rejection long term. Kinetic glucose tolerance (GTT) studies in nude mice demonstrated transplanted MIN-6 cells are close but not as effective as normal islets in controlling blood glucose and blood glucose set point for insulin release in MIN-6 cells decreases to hypoglycemic levels over time. To avoid hypoglycemia, the effect of MIN-6 cell irradiation was assessed. However, irradiation only delayed the development of hypoglycemia, not altering the final glucose set point for insulin release. In conclusion, we have characterized a mouse model for beta-cell transplantation using subcutaneous MIN-6 cells that can be used as a tool to study approaches to mitigate immune rejection.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 4","pages":"71-86"},"PeriodicalIF":2.2,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1763719","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38070305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An islet maturation media to improve the development of young porcine islets during in vitro culture. 一种体外培养促进猪胰岛发育的胰岛成熟培养基。
IF 2.2 4区 医学
Islets Pub Date : 2020-05-03 Epub Date: 2020-05-27 DOI: 10.1080/19382014.2020.1750933
Hien Lau, Nicole Corrales, Samuel Rodriguez, Colleen Luong, Frank Zaldivar, Michael Alexander, Jonathan R T Lakey
{"title":"An islet maturation media to improve the development of young porcine islets during in vitro culture.","authors":"Hien Lau,&nbsp;Nicole Corrales,&nbsp;Samuel Rodriguez,&nbsp;Colleen Luong,&nbsp;Frank Zaldivar,&nbsp;Michael Alexander,&nbsp;Jonathan R T Lakey","doi":"10.1080/19382014.2020.1750933","DOIUrl":"https://doi.org/10.1080/19382014.2020.1750933","url":null,"abstract":"<p><strong>Background: </strong>The use of pancreata from pre-weaned piglets has the potential to serve as an unlimited alternative source of islets for clinical xenotransplantation. As pre-weaned porcine islets (PPIs) are immature and require prolonged culture, we developed an islet maturation media (IMM) and evaluated its effect on improving the quantity and quality of PPIs over 14 days of culture.</p><p><strong>Methods: </strong>PPIs were isolated from the pancreata of pre-weaned Yorkshire piglets (8-15 days old). Each independent islet isolation was divided for culture in either control Ham's F-10 media (n = 5) or IMM (n = 5) for 14 days. On day 3, 7 and 14 of culture, islets were assessed for islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of beta cells, and insulin secretion during glucose stimulation.</p><p><strong>Results: </strong>In comparison to control islets, culturing PPIs in IMM significantly increased islet yield. PPIs cultured in IMM also maintained a stable isolation index and viability throughout 14 days of culture. The insulin content, endocrine cellular composition, and differentiation of beta cells were significantly improved in PPIs cultured in IMM, which subsequently augmented their insulin secretory capacity in response to glucose challenge compared to control islets.</p><p><strong>Conclusions: </strong>Culturing PPIs in IMM increases islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of endocrine progenitor cells toward beta cells, and insulin secretion. Due to the improved islet quantity and quality after <i>in vitro</i> culture, the use of IMM in the culture of PPIs will assist to advance the outcomes of clinical islet xenotransplantation.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 3","pages":"41-58"},"PeriodicalIF":2.2,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1750933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37981103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Selective monitoring of insulin secretion after CRISPR interference in intact pancreatic islets despite submaximal infection. 尽管亚极大感染,CRISPR干扰后完整胰岛胰岛素分泌的选择性监测。
IF 2.2 4区 医学
Islets Pub Date : 2020-05-03 Epub Date: 2020-06-24 DOI: 10.1080/19382014.2020.1752072
Kaavian Shariati, Zachary Pappalardo, Deeksha G Chopra, Nicholas Yiv, Robin Sheen, Gregory Ku
{"title":"Selective monitoring of insulin secretion after CRISPR interference in intact pancreatic islets despite submaximal infection.","authors":"Kaavian Shariati,&nbsp;Zachary Pappalardo,&nbsp;Deeksha G Chopra,&nbsp;Nicholas Yiv,&nbsp;Robin Sheen,&nbsp;Gregory Ku","doi":"10.1080/19382014.2020.1752072","DOIUrl":"https://doi.org/10.1080/19382014.2020.1752072","url":null,"abstract":"<p><p>Virus-mediated gene knockdown in intact pancreatic islets is technically challenging due to poor infection of the center of the islet. Because the cells that do not have knockdown have normal insulin secretion, measuring changes in insulin secretion after gene knockdown is challenging. We describe a method to monitor insulin secretion from only the beta cells with knockdown of a gene of interest in intact islets using a single lentivirus containing a guide RNA, a luciferase insulin secretion reporter and a dCas9-KRAB cassette. This method allows rapid and inexpensive monitoring of insulin secretion from only those beta cells with knockdown, circumventing the problem of incomplete islet infection.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 3","pages":"59-69"},"PeriodicalIF":2.2,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1752072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38078821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of pre-transplant psychosocial burden in an integrated national islet transplant program. 国家综合胰岛移植计划中移植前心理社会负担的特征。
IF 2.2 4区 医学
Islets Pub Date : 2020-03-03 Epub Date: 2020-08-20 DOI: 10.1080/19382014.2020.1736740
Aaron Yl Liew, Elizabeth Holmes-Truscott, Anneliese Js Flatt, Denise Bennett, Robert Crookston, Mirka Pimkova, Linda Birtles, John Casey, Andrew Pernet, Ruth C Wood, Pratik Choudhary, Shareen Forbes, Martin K Rutter, Miranda Rosenthal, Paul Johnson, James Am Shaw, Jane Speight
{"title":"Characterization of pre-transplant psychosocial burden in an integrated national islet transplant program.","authors":"Aaron Yl Liew,&nbsp;Elizabeth Holmes-Truscott,&nbsp;Anneliese Js Flatt,&nbsp;Denise Bennett,&nbsp;Robert Crookston,&nbsp;Mirka Pimkova,&nbsp;Linda Birtles,&nbsp;John Casey,&nbsp;Andrew Pernet,&nbsp;Ruth C Wood,&nbsp;Pratik Choudhary,&nbsp;Shareen Forbes,&nbsp;Martin K Rutter,&nbsp;Miranda Rosenthal,&nbsp;Paul Johnson,&nbsp;James Am Shaw,&nbsp;Jane Speight","doi":"10.1080/19382014.2020.1736740","DOIUrl":"https://doi.org/10.1080/19382014.2020.1736740","url":null,"abstract":"<p><p>The psychological burden experienced by people with diabetes prior to islet transplantation is recognized but has not been studied comprehensively, especially in relation to glycemia. Therefore, we conducted a rigorous pre-operative psychosocial profile of UK islet transplant recipients, and compared groups with higher/lower HbA1 c to test the null hypothesis that pre-transplant hypoglycemia awareness and psychosocial burden would not be related to baseline HbA1 c in this high-risk cohort. Pre-transplant, recipients (n = 44) completed validated hypoglycemia awareness questionnaires and generic/diabetes-specific measures of psychological traits and states. Scores were compared in groups, dichotomized by HbA1 c (≤8% versus >8%). Participants were aged (mean±SD) 53 ± 10 years; 64% were women; with HbA1 c 8.3 ± 1.7%. Median rate of severe hypoglycemia over the preceding 12 months was 13 events/person-year and 90% had impaired awareness of hypoglycemia (Gold/Clarke score ≥4). Participants had elevated fear of hypoglycemia (HFS-II Worry), impaired diabetes-specific quality of life (DQoL) and low generic health status (SF-36; EQ-5D). One quarter reported scores indicating likely anxiety/depression (HAD). Dispositional optimism (LOT-R) and generalized self-efficacy (GSE) were within published 'norms.' Despite negative perceptions of diabetes (including low personal control), participants were confident that islet transplantation would help (BIPQ). Hypoglycemia awareness and psychosocial profile were comparable in lower (n = 24) and higher (n = 20) HbA1 c groups. Islet transplant candidates report sub-optimal generic psychological states (anxiety/depressive symptoms), health status and diabetes-specific psychological states (fear of hypoglycemia, diabetes-specific quality of life). While their generic psychological traits (optimism, self-efficacy) are comparable with the general population, they are highly optimistic about forthcoming transplant. HbA1 c is not a proxy measure of psychosocial burden, which requires the use of validated questionnaires to systematically identify those who may benefit most from psychological assessment and support.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 2","pages":"21-31"},"PeriodicalIF":2.2,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1736740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38279081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Pancreatic and duodenal homeobox-1 (PDX1) contributes to β-cell mass expansion and proliferation induced by Akt/PKB pathway. 胰腺和十二指肠同源盒-1 (PDX1)参与Akt/PKB通路诱导的β细胞团扩增和增殖。
IF 2.2 4区 医学
Islets Pub Date : 2020-03-03 DOI: 10.1080/19382014.2020.1762471
Mark Anthony Jara, Joao Pedro Werneck-De-Castro, Camila Lubaczeuski, James D Johnson, Ernesto Bernal-Mizrachi
{"title":"Pancreatic and duodenal homeobox-1 (PDX1) contributes to β-cell mass expansion and proliferation induced by Akt/PKB pathway.","authors":"Mark Anthony Jara,&nbsp;Joao Pedro Werneck-De-Castro,&nbsp;Camila Lubaczeuski,&nbsp;James D Johnson,&nbsp;Ernesto Bernal-Mizrachi","doi":"10.1080/19382014.2020.1762471","DOIUrl":"https://doi.org/10.1080/19382014.2020.1762471","url":null,"abstract":"<p><p>Maintenance of pancreatic β-cell mass and function is fundamental to glucose homeostasis and to prevent diabetes. The PI3 K-Akt-mTORC1 pathway is critical for β-cells mass and function, while PDX1 has been implicated in β-cell development, maturation, and function. Here we tested whether Akt signaling requires PDX1 expression to regulate β-cell mass, proliferation, and glucose homeostasis. In order to address that, we crossed a mouse model overexpressing constitutively active Akt mutant in β-cells (<i>β-caAkt</i>) with mice lacking one allele of PDX1gene (<i>β-caAkt/pdx1<sup>+/-</sup>)</i>. While the <i>β-caAkt</i> mice exhibit higher plasma insulin levels, greater β-cell mass and improved glucose tolerance compared to control mice, the <i>β-caAkt/pdx1<sup>+/-</sup></i> mice are hyperglycemic and intolerant to glucose. The changes in glucose homeostasis in <i>β-caAkt/pdx1<sup>+/-</sup></i> were associated with a 60% reduction in β-cell mass compared to <i>β-caAkt</i> mice. The impaired β-cell mass in the <i>β-caAkt/pdx1<sup>+/-</sup></i> mice can be explained by a lesser β-cell proliferation measured by the number of Ki67 positive β-cells. We did not observe any differences in apoptosis between <i>β-caAkt/pdx1<sup>+/-</sup></i> and <i>β-caAkt</i> mice. In conclusion, PDX1 contributes to β-cell mass expansion and glucose metabolism induced by activation of Akt signaling.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 2","pages":"32-40"},"PeriodicalIF":2.2,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1762471","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38336301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
The effect of preexisting HMGB1 within fetal bovine serum on murine pancreatic beta cell biology. 胎牛血清中预先存在的HMGB1对小鼠胰腺β细胞生物学的影响。
IF 2.2 4区 医学
Islets Pub Date : 2020-01-01 Epub Date: 2020-01-14 DOI: 10.1080/19382014.2019.1696128
Hyunwoo Chung, Sung Ji Hong, So Won Choi, Chung-Gyu Park
{"title":"The effect of preexisting HMGB1 within fetal bovine serum on murine pancreatic beta cell biology.","authors":"Hyunwoo Chung,&nbsp;Sung Ji Hong,&nbsp;So Won Choi,&nbsp;Chung-Gyu Park","doi":"10.1080/19382014.2019.1696128","DOIUrl":"https://doi.org/10.1080/19382014.2019.1696128","url":null,"abstract":"<p><p>High-mobility group box 1 (HMGB1) can act as a structural protein of the chromatin and at the same time as a mediator of the immune system. Its high correlation with the graft acceptance in pancreatic islet recipients makes it a biomarker in islet transplantation. With the suspicion that preexisting HMGB1 in the fetal bovine serum (FBS) would be detrimental to the viability and function of murine beta cells, HMGB1 was removed from FBS and its impact was investigated. Interestingly, the elimination of HMGB1 from FBS seemed unfavorable to the viability and function of cultured murine beta cells, suggesting that the preexisting HMGB1 in the FBS may be an indispensable component of islet cell culture.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 1","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2019.1696128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37540515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inflammatory biomarkers in the blood and pancreatic tissue of organ donors that predict human islet isolation success and function. 预测人类胰岛分离成功和功能的器官供体血液和胰腺组织中的炎症生物标志物。
IF 2.2 4区 医学
Islets Pub Date : 2020-01-01 Epub Date: 2020-01-14 DOI: 10.1080/19382014.2019.1696127
Alina R Oancea, Keiko Omori, Chris Orr, Jeffrey Rawson, Donald C Dafoe, Ismail H Al-Abdullah, Fouad Kandeel, Yoko Mullen
{"title":"Inflammatory biomarkers in the blood and pancreatic tissue of organ donors that predict human islet isolation success and function.","authors":"Alina R Oancea,&nbsp;Keiko Omori,&nbsp;Chris Orr,&nbsp;Jeffrey Rawson,&nbsp;Donald C Dafoe,&nbsp;Ismail H Al-Abdullah,&nbsp;Fouad Kandeel,&nbsp;Yoko Mullen","doi":"10.1080/19382014.2019.1696127","DOIUrl":"https://doi.org/10.1080/19382014.2019.1696127","url":null,"abstract":"<p><p>The pancreas of brain-dead donors is the primary source of islets for transplantation. However, brain death mediates systemic inflammation, which may affect the quantity and quality of isolated islets. Our aim was to identify inflammatory biomarkers in donor blood and/or pancreatic tissue capable of predicting islet isolation success. Blood samples were collected from 21 pancreas donors and 14 healthy volunteers. Pancreatic tissue samples were also collected from the corresponding donor during organ procurement. Six serum cytokines were measured by a fluorescent bead-based immunoassay, and the expression of fifteen inflammatory target genes was quantified by quantitative reverse transcription polymerase chain reaction (RT-qPCR). There was no correlation between serum inflammatory cytokines and mRNA expression of the corresponding genes in peripheral blood mononuclear cells (PBMCs) or pancreatic tissue. The <i>IL6</i> expression in pancreatic tissue correlated negatively with post-isolation islet yield. Islets isolated from donors highly expressing <i>IFNG</i> in PBMCs and <i>MAC1</i> in pancreatic tissue functioned poorly <i>in vivo</i> when transplanted in diabetic NOD<i>scid</i> mice. Furthermore, the increased <i>MAC1</i> in pancreatic tissue was positively correlated with donor hospitalization time. Brain death duration positively correlated with higher expression of <i>IL1B</i> in PBMCs and <i>TNF</i> in both PBMCs and pancreatic tissue but failed to show a significant correlation with islet yield and <i>in vivo</i> function. The study indicates that the increased inflammatory genes in donor pancreatic tissues may be considered as biomarkers associated with poor islet isolation outcome.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 1","pages":"9-19"},"PeriodicalIF":2.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2019.1696127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37541109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regional variation of human pancreatic islets dimension and its impact on beta cells in Indian population 人胰岛尺寸的区域差异及其对印度人群β细胞的影响
IF 2.2 4区 医学
Islets Pub Date : 2019-11-02 DOI: 10.1080/19382014.2019.1686323
P. Ravi, S. Purkait, Usha Agrawal, S. Patra, Madhumita Patnaik, S. Singh, P. Mishra
{"title":"Regional variation of human pancreatic islets dimension and its impact on beta cells in Indian population","authors":"P. Ravi, S. Purkait, Usha Agrawal, S. Patra, Madhumita Patnaik, S. Singh, P. Mishra","doi":"10.1080/19382014.2019.1686323","DOIUrl":"https://doi.org/10.1080/19382014.2019.1686323","url":null,"abstract":"ABSTRACT Background & objectives: Islet of Langerhans, the endocrine pancreas plays a significant role in glucose metabolism. Obesity and insulin resistance are the major factors responsible for beta cell dysfunction. Asian Indian population has increased susceptibility to diabetes in spite of having lower BMI. The morphology of islets plays a significant role in beta cell function. The present study was designed for better understanding the morphology, composition and distribution of islets in different parts of the pancreas and its impact on beta cell proportion. Methods: We observed islet morphology and beta cell area proportion by Large-scale computer-assisted analysis in 20 adult human pancreases in non-diabetic Indian population. Immunohistochemical staining with anti-synaptophysin and anti-insulin antibody was used to detect islet and beta cells respectively. Whole slide images were analyzed using ImageJ software. Results: Endocrine proportion were heterogeneously increasing from head to tail with maximum islet and beta cell distribution in the tail region. Larger islets were predominately confined to the tail region. The islets in Indian population were relatively smaller in size, but they have more beta cells (20%) when compared to American population. Interpretation & conclusions: The beta cells of larger islets are functionally more active than the smaller islets via paracrine effect. Thus, reduction in the number of larger islets may be one of the probable reasons for increased susceptibility of Indians to diabetes even at lower BMI. Knowledge about the regional distribution of islets will help the surgeons to preserve the islet rich regions during surgery.","PeriodicalId":14671,"journal":{"name":"Islets","volume":"11 1","pages":"141 - 151"},"PeriodicalIF":2.2,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2019.1686323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42951539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信