J. G. Cawson, J. E. Burton, B. J. Pickering, V. Demetriou, A. I. Filkov
{"title":"Quantifying the flammability of living plants at the branch scale: which metrics to use?","authors":"J. G. Cawson, J. E. Burton, B. J. Pickering, V. Demetriou, A. I. Filkov","doi":"10.1071/wf23007","DOIUrl":"https://doi.org/10.1071/wf23007","url":null,"abstract":"Background Plant flammability is an important factor in fire behaviour and post-fire ecological responses. There is consensus about the broad attributes (or axes) of flammability but little consistency in their measurement. Aims We sought to provide a pathway towards greater consistency in flammability research by identifying a subset of preferred flammability metrics for living plants. Methods Flammability was measured at the branch scale using a range of metrics for 140 plant specimens in an apparatus that simulates an approaching fire front. Key results We identified a subset of preferred metrics, which quantify the axes of flammability for living plants, including time to ignition (ignitability), peak heat release rate (combustibility), flaming duration (sustainability) and consumption (consumability). Flaming duration was strongly correlated with heat release rate, so could be a proxy for combustibility. Flammability was higher for species with greater surface area and biomass per branch. Conclusions We identified a subset of preferred metrics for quantifying the flammability of living plants. These metrics quantify the key axes of flammability and are measurable using different experimental apparatus and across multiple scales, making them suitable for widespread use. Implications The inclusion of these flammability metrics in future studies has the potential to enhance consistency and comparability between studies.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135436368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transitioning operational satellite grassland curing from MODIS to VIIRS","authors":"Danielle Wright, Leon Majewski","doi":"10.1071/wf22227","DOIUrl":"https://doi.org/10.1071/wf22227","url":null,"abstract":"Background In Australia, grassland curing (senescence) is an essential component in fire danger calculations. In seven (out of eight) states/territories in Australia, operational curing data are derived from the MapVictoria satellite model. From 2013 to 2023, MapVictoria data have been calculated using MODerate resolution Imaging Spectroradiometer (MODIS) data from the Terra satellite. Terra has exceeded its designed mission lifetime, but the continuation of satellite curing data is crucial for fire agencies to continue fire danger calculations. Aims The aim of this study was to adjust the MapVictoria model so it could be calculated using a newer satellite sensor system: Visible Infrared Imaging Radiometer Suite (VIIRS). Methods Data from the VIIRS bands were adjusted to match those of MODIS using timeseries from 2013 to 2020. The adjusted VIIRS bands were used to derive a VIIRS curing model: ‘viirs-mvcuring’. Key results The viirs–mvcuring model exhibited lower curing estimates than MODIS by up to 2.6% in Northern sites and 1.4% in Southern sites and exhibited lower curing estimates than ground-based curing by 0.1% in Northern sites and 3.5% in Southern sites. Conclusions The development of the viirs–mvcuring model has ensured continued availability of satellite curing data. Implications The transition to VIIRS will provide continued input of curing into fire danger calculations across Australia.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134989622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IX International Conference on Forest Fire Research and 17th International Wildland Fire Safety Summit: introduction to special issue (Part 3)","authors":"L. Ribeiro, D. Viegas, M. Almeida","doi":"10.1071/wf23087","DOIUrl":"https://doi.org/10.1071/wf23087","url":null,"abstract":"The ninth International Conference on Forest Fire Research, organised by the Forest Fire Research Center of the Association for Developmental of Industrial Aerodynamics every 4 years since 1990, was held in November 2022 in Coimbra, Portugal. The conference was held in conjunction with the 17th International Wildland Fire Safety Summit, sponsored by the International Association of Wildland Fire. The number and quality of the submissions for this joint event was very high, and the authors were encouraged to submit a full paper to a special issue of the International Journal of Wildland Fire (IJWF). Given the large number of submissions, the Journal decided to publish the special issue in several parts. Part 1 was published in January 2023, with eight papers, and Part 2 in March 2023, with 10 papers. This third part presents 15 original papers in five topical areas: decision support systems and tools (3), risk reduction (2), risk assessment (3), wildland urban interface (3) and wildfire management and safety (4). All the papers in this special issue are published Open Access.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49441805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IJWF Outstanding Associate Editor Award 2022: David Calkin and Hayley Hesseln","authors":"","doi":"10.1071/wfv32n4_aw","DOIUrl":"https://doi.org/10.1071/wfv32n4_aw","url":null,"abstract":"","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46723654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IX International Conference on Forest Fire Research and 17th International Wildland Fire Safety Summit: introduction to special issue (Part 2)","authors":"M. Almeida, D. Viegas, L. Ribeiro","doi":"10.1071/wf23037","DOIUrl":"https://doi.org/10.1071/wf23037","url":null,"abstract":"The ninth International Conference on Forest Fire Research, together with the 17th International Wildland Fire Safety Summit was held in November 2022. This joint conference brought together several hundred presentations in the field of wildfire research. This special issue of the International Journal of Wildland Fire includes several papers describing work presented at the conference. Due to the large number and variety of papers submitted, the special issue is being published in several parts. Part 1 of the special issue was published, in January 2023, with a set of eight papers. This Foreword to Part 2 of the special issue introduces 10 new papers on various topics that include: modelling of ignition probability, fire behaviour modelling, wildfire hazard mapping, fire management policies, imagery and mapping, and wildland–urban interface. All papers in the special issue are published Open Access.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49580169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Katurji, Bob Noonan, Jiawei Zhang, Andres Valencia, Benjamin Shumacher, J. Kerr, T. Strand, G. Pearce, P. Zawar-Reza
{"title":"Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behaviour","authors":"M. Katurji, Bob Noonan, Jiawei Zhang, Andres Valencia, Benjamin Shumacher, J. Kerr, T. Strand, G. Pearce, P. Zawar-Reza","doi":"10.1071/wf22100","DOIUrl":"https://doi.org/10.1071/wf22100","url":null,"abstract":"Background Wildfires propagate through vegetation exhibiting complex spread patterns modulated by ambient atmospheric wind turbulence. Wind gusts at the fire-front extend and intensify flames causing direct convective heating towards unburnt fuels resulting in rapid acceleration of spread. Aims To characterise ambient and fire turbulence over gorse shrub and explore how this contributes to fire behaviour. Methods Six experimental burns were carried out in Rakaia, New Zealand under varying meteorological conditions. The ignition process ensured a fire-line propagating through dense gorse bush (1 m high). Two 30-m sonic anemometer towers measured turbulent wind velocity at six different levels above the ground. Visible imagery was captured by cameras mounted on uncrewed aerial vehicles at 200 m AGL. Key results Using wavelet decomposition, we identified different turbulent time scales that varied between 1 and 128 s relative to height above vegetation. Quadrant analysis identified statistical distributions of atmospheric sweeps (downbursts of turbulence towards vegetation) with sustained events emanating from above the vegetation canopy and impinging at the surface with time scales up to 10 s. Conclusions Image velocimetry enabled tracking of ‘fire sweeps’ and characterised for the first time their lifetime and dynamics in comparison with overlying atmospheric turbulent structures. Implications This methodology can provide a comprehensive toolkit when investigating coupled atmosphere–fire interactions.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"1 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42192792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwan Katurji, Bob Noonan, Jiawei Zhang, Andres Valencia, Benjamin Schumacher, Jessica Kerr, Tara Strand, Grant Pearce, Peyman Zawar-Reza
{"title":"<i>Corrigendum to</i>: Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behaviour","authors":"Marwan Katurji, Bob Noonan, Jiawei Zhang, Andres Valencia, Benjamin Schumacher, Jessica Kerr, Tara Strand, Grant Pearce, Peyman Zawar-Reza","doi":"10.1071/wf22100_co","DOIUrl":"https://doi.org/10.1071/wf22100_co","url":null,"abstract":"<sec> Background Wildfires propagate through vegetation exhibiting complex spread patterns modulated by ambient atmospheric wind turbulence. Wind gusts at the fire-front extend and intensify flames causing direct convective heating towards unburnt fuels resulting in rapid acceleration of spread. </sec> <sec> Aims To characterise ambient and fire turbulence over gorse shrub and explore how this contributes to fire behaviour. </sec> <sec> Methods Six experimental burns were carried out in Rakaia, New Zealand under varying meteorological conditions. The ignition process ensured a fire-line propagating through dense gorse bush (1&#x2009;m high). Two 30-m sonic anemometer towers measured turbulent wind velocity at six different levels above the ground. Visible imagery was captured by cameras mounted on uncrewed aerial vehicles at 200&#x2009;m AGL. </sec> <sec> Key results Using wavelet decomposition, we identified different turbulent time scales that varied between 1 and 128&#x2009;s relative to height above vegetation. Quadrant analysis identified statistical distributions of atmospheric sweeps (downbursts of turbulence towards vegetation) with sustained events emanating from above the vegetation canopy and impinging at the surface with time scales up to 10&#x2009;s. </sec> <sec> Conclusions Image velocimetry enabled tracking of &#x2018;fire sweeps&#x2019; and characterised for the first time their lifetime and dynamics in comparison with overlying atmospheric turbulent structures. </sec> <sec> Implications This methodology can provide a comprehensive toolkit when investigating coupled atmosphere&#x2013;fire interactions. </sec>","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136196217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Corrigendum to</i>: Altered mixed-severity fire regime has homogenised montane forests of Jasper National Park","authors":"Raphaël D. Chavardès, Lori D. Daniels","doi":"10.1071/wf15048_c1","DOIUrl":"https://doi.org/10.1071/wf15048_c1","url":null,"abstract":"Fire suppression has altered the historical mixed-severity fire regime and homogenised forest structures in Jasper National Park, Canada. We used dendrochronology to reconstruct fire history and assess forest dynamics at 29 sites in the montane forests. Based on fire scars and even-aged post-fire cohorts, we determined 18 sites had mixed-severity fire histories through time, and 11 sites had evidence of high-severity fires only &#x2013; yielding a mixed-severity fire regime for the study area. Lodgepole pine, hybrid spruce and Douglas-fir established simultaneously after low- and high-severity fires. Regardless of fire history, forest canopies were mixed in composition and subcanopies were strongly dominated by shade-tolerant hybrid spruce. Despite their size, subcanopy trees were similar in age to the canopy trees. Current stand composition and age structures largely reflect the effects of high-severity fires that burned ~110 years ago at 18 of 29 sites. In the absence of fires after 1905, forests have matured simultaneously, homogenising the landscape and resulting in forest structures that are more conducive to high-severity fire than are fires of a range of severities. Proactive fire management is justified to restore fire as a vital ecological process and promote forest resilience by countering the effects of a century of fire suppression.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"582 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136195920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}