{"title":"Antioxidant Activity of Bioactive Constituents from Crude Palm Oil and Palm Methyl Ester","authors":"Ahmad Gazali Sofwan Sinaga, D. Siahaan","doi":"10.35876/ijop.v2i1.23","DOIUrl":"https://doi.org/10.35876/ijop.v2i1.23","url":null,"abstract":"Palm oil has many minor components that can act as natural antioxidant. It contains carotenoid and vitamin E. This research was conducted to determine antioxidant activity of non-polar extract from crude palm oil and fatty acid methyl ester. The oil extract obtained from crude palm oil by solvent extraction with hexane (CPO) and transesterification method followed by solvent extraction with hexane (PME). Carotene content from non-polar extracts were analyzed by using UV-visible spectrophotometer, while carotene composition (α- and β-carotene) and vitamin E (tocopherol and tocotrienol) compositions were analyzed by using high performance liquid chromatography. Glycerides and esters content was analyzed by gas chromatography. Antioxidant activity of oil extract was determined by using 2,2’-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay method. Result revealed that PME has higher content carotenoid and vitamin E than CPO. As expected, the concentration of carotenoid and vitamin E in PME increased with transesterification process. Results also showed that all of non-polar extracts exhibited antioxidant activity significantly, as proven by inhibitory concentration 50% (IC50) of PME and CPO is 5.9 µg mL-1 and 15.6 µg mL-1. It is suggested that the presence of carotenoid and vitamin E may have a potential effect as natural antioxidant.","PeriodicalId":14324,"journal":{"name":"International Journal of Oil Palm","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75543140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valuation of Waste Oil Palm Biomass for Energy in Palm Oil Mill in Indonesia","authors":"A. Tambunan","doi":"10.35876/ijop.v2i1.26","DOIUrl":"https://doi.org/10.35876/ijop.v2i1.26","url":null,"abstract":"Valuation of biomass and its waste is indispensable for sustainable development of bioenergy in Indonesia. The objective of this research is to estimate the value of biomass, mainly from oil palm waste, for supporting bioenergy development in Indonesia. The research was applying thermodynamic theory to reinterpret the economic valuation by exergonomic analysis on biomass conversion to electricity. The results revealed that exergonomic value of electricity generated from oil palm fiber was 5 cents USD kWh-1, while the steam was 0.46 cents US kWh-1, under the assumption of zero biomass value. When the value of electricity was at its production base cost, the biomass (i.e. oil palm fiber) could be valuated to Rp 296.57 per kWh of its exergy content, or Rp 1 764.73 kg-1 of the biomass. The real price of shell in the field was Rp 700 kg-1. The results show that either the oil palm fiber is undervalued or the production cost of electricity generated from the fiber could be lower.","PeriodicalId":14324,"journal":{"name":"International Journal of Oil Palm","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88593962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Sitompul, D. Setyawan, Aldhita Graffi Nabila, V. Wonoputri, H. Lee
{"title":"Synthesis of Nanocomposite Materials for Biodegradable Food Packaging","authors":"J. Sitompul, D. Setyawan, Aldhita Graffi Nabila, V. Wonoputri, H. Lee","doi":"10.35876/ijop.v2i1.22","DOIUrl":"https://doi.org/10.35876/ijop.v2i1.22","url":null,"abstract":"This paper concerns on synthesis of nancomposite materials, based on poly(D,Llactic acid)/poly(L-lactic acid). The Poly(L,D-lactic acid) (PDLLA) was produced from L,Dlactic acid through direct polycondensation method and poly(L-lactic acid) (PLLA) derived from L-lactide through ring-opening polymerization method. The PDLLA/PLLA films were produced through solvent casting method. The ratio of PDLLA in the PDLLA/PLLA matrix was determined by adjusting PDLLA fraction. The nanoclay used in this experiment were natural clay (Bentonite) and modified organoclay with quaternary ammonium salt (Cloisite 30B). The PLA blend nanocomposites was produced through solution intercalation with sonication. To determine the effect of amounts of nanoclay and sonication period, these two variable were varied. To analyze chemical structure of PLA, the PLA blend film were tested using Fourier Transform Infrared (FTIR). The dispersion of nanoclay on the PLA blend matrix was analyzed using X-Ray Diffraction (XRD) test. The properties of PLA blend nanocomposites film were then characterized using Universal Testing Machine (UTM), Water Vapor Permeability (WVP) test and the enzymatic biodegradability test. The fraction of PDLLA on the PLA blend was fixed 70 % wt. XRD test showed exfoliation of Cloisite 30B in the PLA matrix while the Bentonite was exfoliated as well as intercalated. The addition of nanoclay improved the tensile strength of PLA blend nanocomposites polymer to the number of 56.26 MPa and 37.65 MPa, respectively. Sonication period of PDLLA/PLLA nanocomposite affected the mechanical properties, barrier properties and polymer biodegradability. Moreover, from the WVP test, the barrier properties of the blend polymers was improved and increased twice compared to that of the pure PDLLA/PLLA.","PeriodicalId":14324,"journal":{"name":"International Journal of Oil Palm","volume":"12 12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88867370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}