A. Mostafaeipour, M. Jahangiri, H. Saghaei, Afsaneh Raiesi Goojani, Md. Shahariar Chowdhury, K. Techato
{"title":"Impact of Different Solar Trackers on Hydrogen Production: A Case Study in Iran","authors":"A. Mostafaeipour, M. Jahangiri, H. Saghaei, Afsaneh Raiesi Goojani, Md. Shahariar Chowdhury, K. Techato","doi":"10.1155/2022/3186287","DOIUrl":"https://doi.org/10.1155/2022/3186287","url":null,"abstract":"Currently, solar energy is considered one of the most suitable options for overcoming the problems of fossil fuel depletion, and global warming. Also, the high costs associated to photovoltaic systems, renders the maximum utilization of solar cells, a fundamental and undeniable necessity. Technical-economic-environmental analysis, using HOMER software, was performed under four different scenarios: without the tracker, with the horizontal axis tracker, with the vertical axis tracker, and with the dual-axis tracker. Consequently, the best configuration was chosen for each scenario. The optimal system for all four scenarios, in the circumstance of disconnection from the grid, only involves the solar cells, while in the circumstance of connection to the grid; both the solar cells and the wind turbine are included. The results demonstrate that in the off grid situation, the scenario involving the use of a vertical axis tracker would be the most cost-effective, with the price of 0.812 $/kWh for energy produced, while the lowest price for producing one kg of hydrogen is $77.97 is attributable to the scenario without the use of a solar tracker. In the circumstance of being connected to the power grid, the scenario involving the use of a vertical axis tracker would be most cost-effective, with the price of each kWh of energy produced equal to $ 0.223. At the price of $29.33 per kilogram, the scenario involving the use of a vertical axis tracker would also be most suitable for the production of hydrogen. Another important fact revealed through the results, is the crucial role of dump load, in the provision of the heat required in an off-grid situation. However, dump load is not associated to heat provision in a grid-connected situation.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45613784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Ganthia, Sudheer Hanumanthakari, Hemachandra Gudimindla, Harishchander Anandaram, M. Ramkumar, M. Mohanty, S. Gopal, Atul Sarojwal, Kibrom Menasbo Hadish
{"title":"Machine Learning Strategy to Achieve Maximum Energy Harvesting and Monitoring Method for Solar Photovoltaic Panel Applications","authors":"B. Ganthia, Sudheer Hanumanthakari, Hemachandra Gudimindla, Harishchander Anandaram, M. Ramkumar, M. Mohanty, S. Gopal, Atul Sarojwal, Kibrom Menasbo Hadish","doi":"10.1155/2022/4493116","DOIUrl":"https://doi.org/10.1155/2022/4493116","url":null,"abstract":"The choice of the optimal orientation of the solar panels is by far one of the most important issues in the practical application of solar installations. The use of phase changing materials (PCMs) is an efficient approach of storing solar thermal energy. Because PCMs are isothermal in nature, they provide better density energy storage and the capacity to function across a wide temperature range. Unfortunately, this feature is very rare on various solar power panels; however, ignoring it can reduce the performance of the panels to unacceptable levels. The fact is that the angle of incidence of rays on the surface greatly affects the reflection coefficient and, consequently, the role of unacceptable solar energy. In this paper, a smart energy harvesting model was proposed. In the case of glass, when the angle of incidence varies vertically from its surface to 30, the reflection coefficient is practically unchanged and slightly less than 5%, i.e., more than 95% of the radiation goes inwards. Furthermore, the reflection increase is noticeable, and the area of the reflected radiation by 60 doubles to almost 10%. At an angle of incidence of 70, it reflects 20% of the radiation, and at 80, 40%. For most other objects, the dependence of the reflection magnitude on the angle of incidence is approximately the same.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43225695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Dhanalakshmi, V. Venkatesh, P. Ranjit, N. Hemalatha, S. Divyapriya, Raman Sandhiya, Sumit Kushwaha, Asmita Marathe, Mekete Asmare Huluka
{"title":"Application of Machine Learning in Multi-Directional Model to Follow Solar Energy Using Photo Sensor Matrix","authors":"P. Dhanalakshmi, V. Venkatesh, P. Ranjit, N. Hemalatha, S. Divyapriya, Raman Sandhiya, Sumit Kushwaha, Asmita Marathe, Mekete Asmare Huluka","doi":"10.1155/2022/5756610","DOIUrl":"https://doi.org/10.1155/2022/5756610","url":null,"abstract":"In this paper, we introduce a deep neural network (DNN) for forecasting the intra-day solar irradiance, photovoltaic PV plants, regardless of whether or not they have energy storage, can benefit from the work being done here. The proposed DNN utilises a number of different methodologies, two of which are cloud motion analysis and machine learning, in order to make forecasts regarding the climatological conditions of the future. In addition to this, the accuracy of the model was evaluated in light of the data sources that were easily accessible. In general, four different cases have been investigated. According to the findings, the DNN is capable of making more accurate and reliable predictions of the incoming solar irradiance than the persistent algorithm. This is the case across the board. Even without any actual data, the proposed model is considered to be state-of-the-art because it outperforms the current NWP forecasts for the same time horizon as those forecasts. When making predictions for the short term, using actual data to reduce the margin of error can be helpful. When making predictions for the long term, however, weather information can be beneficial.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42189897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Anantha Krishnan, A. Jeba Sheela, B. Muthuraj, U. Senthil Kumaran, T. V. Muni, Tirukoti Sudha Rani, Ramesh N. S. V. S. C. Sripada, Manzoor Hiu Siddique, Raja Raju
{"title":"An IOT Innovation of Smart Solar Energy Consumption Analysis and Control in Micro Grid","authors":"V. Anantha Krishnan, A. Jeba Sheela, B. Muthuraj, U. Senthil Kumaran, T. V. Muni, Tirukoti Sudha Rani, Ramesh N. S. V. S. C. Sripada, Manzoor Hiu Siddique, Raja Raju","doi":"10.1155/2022/7506237","DOIUrl":"https://doi.org/10.1155/2022/7506237","url":null,"abstract":"Solar energy consumption is a systematic study used to review the design of facilities, services, and equipment in an organization against specifications of solar panel. The solar panel energy consumption analysis is a work that should be done at the beginning of a solar energy. This way, potential changes can be highlighted before they affect the solar energy budget and schedule. The proposed model provides the IOT-based smart solar energy consumption analysis and control model by using solar photovoltaic micro grid. The proposed IOT design must meet product and process requirements. The solar panel energy should properly address important aspects of production processes. This should include risks related to product quality and safety. Finally, unacceptable risks must be minimized by design. In the solar energy consumption analysis process, the deliverables should be evaluated; customers should precheck the proposed design and identify problematic areas, if any. Solar energy consumption analysis reveals whether user requirements and features are sufficient to achieve the desired outcome. Likewise, there should be corrective actions for discrepancies found in design reviews.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45461682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ganeshkumar, S. Venkatesh, P. Paranthaman, R. Arulmurugan, J. Arunprakash, M. Manickam, S. Venkatesh, G. Rajendiran
{"title":"Performance of Multilayered Nanocoated Cutting Tools in High-Speed Machining: A Review","authors":"S. Ganeshkumar, S. Venkatesh, P. Paranthaman, R. Arulmurugan, J. Arunprakash, M. Manickam, S. Venkatesh, G. Rajendiran","doi":"10.1155/2022/5996061","DOIUrl":"https://doi.org/10.1155/2022/5996061","url":null,"abstract":"In machining processes, cutting tools play a dominant role in producing quality products. The quality of finished goods is directly related to the cutting tool condition. Several types of research have been carried out in cutting tool condition monitoring. On the other hand, the manufacturing industries should be aware of the cutting tool selection, operating conditions, and performance of cutting tools. This article emphasizes the performance of coated cutting tools and tool materials for various machining operations. Nowadays, the nanocoating of CNC tool inserts increases the wear resistance, vibration emissions, metal removal rate, etc. These coating techniques influence the manufacturing industry to increase the productivity and quality of the finished goods and reduce the machining cost. The performance of thin film multilayered coatings such as TiN, TiAlN, AlTiN, Ti, and TiCN on plain silicon carbide tool inserts is revealed by the researchers to guide the manufacturing industry for proper tool selection and standard machining inputs for metal removal operation. The influence of coating material such as TiBN, TiN, TiAlN, and CrAlSiN in cutting tools leads to increase the life time of the cutting tools, which decreases the material sticking and cutting forces. Titanium carbo nitride is wear-resistant and corrosion-resistant. Compared to TiCN, TiAlN is harder due to the higher hardness of 32 GPa. This article concludes the material selection based on the work piece material which yields good metal removal with less cutting forces. The article concludes the cutting material selection based on the work piece for machining operations.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47067449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Vino, S. S. Sivaraju, R. Krishna, T. Karthikeyan, Yogesh Kumar Sharma, K. Venkatesan, G. Manikandan, R. Selvameena, Mebratu Markos
{"title":"Multicluster Analysis and Design of Hybrid Wireless Sensor Networks Using Solar Energy","authors":"T. Vino, S. S. Sivaraju, R. Krishna, T. Karthikeyan, Yogesh Kumar Sharma, K. Venkatesan, G. Manikandan, R. Selvameena, Mebratu Markos","doi":"10.1155/2022/1164613","DOIUrl":"https://doi.org/10.1155/2022/1164613","url":null,"abstract":"A wireless touch network is a distributed, self-organizing network of multiple sensors and actuators in combination with multiple sensors and a radio channel. Also, the security area of such a network can be several meters to several meters. The main difference between wireless sensor networks from traditional computer and telephone networks is the lack of a fixed infrastructure owned by a specific operator or provider. Each user terminal in a touch network is capable of acting as a terminal device only. Despite the long history of sensor networks, the concept of building a sensor network is not finally imposed and expressed in some software and hardware (platform) solutions. In this paper, the design and analysis of multicluster model of the sensor nodes in wireless sensor network with the help of solar energy. This proposed model provides the required energy to transmit the information between two end nodes in different cluster. The communication between the end to end clusters was increased based on this design. The implementation of sensory networks at the current stage depends largely on the specific needs of the industrial problem. The architecture, software, and hardware implementation technology is at an intensive development stage, attracting the attention of developers looking for a technological niche of future makers.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43606718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study on Gas-Solid Heat Transfer Characteristics for the Vertical Waste Heat Recovery Using the Inverse Problem Method","authors":"Sizong Zhang, Z. Wen, Yi-ding Xing, X. Liu, Hui Zhang, Yaxuan Xiong","doi":"10.1155/2022/4053105","DOIUrl":"https://doi.org/10.1155/2022/4053105","url":null,"abstract":"To establish an accurate model to optimize the vertical cooling process of the sinter, the inverse problem method is used to calculate the gas-solid heat transfer coefficient based on the gas outlet temperature, which is fitted into the correlation. The research indicates that the increase in the gas velocity is beneficial to the enhancement of the gas-solid heat transfer. With the gas velocity \u0000 \u0000 \u0000 \u0000 u\u0000 \u0000 \u0000 g\u0000 \u0000 \u0000 \u0000 increasing from 0.8 m·s-1 to 1.6 m·s-1, the heat transfer coefficient \u0000 \u0000 \u0000 \u0000 h\u0000 \u0000 \u0000 v\u0000 \u0000 \u0000 \u0000 increases by about twice. But this effect will weaken with the increase in the particle size. Besides, the reduction of the particle size is conducive to improving the convective heat transfer intensity between the gas and solid. With the particle size decreasing, this enhancement effect is progressively evident. At \u0000 \u0000 \u0000 \u0000 u\u0000 \u0000 \u0000 g\u0000 \u0000 \u0000 \u0000 of 0.8 m·s-1, the increasing extent of \u0000 \u0000 \u0000 \u0000 h\u0000 \u0000 \u0000 v\u0000 \u0000 \u0000 \u0000 is 1142.25 W·m-3·K-1 with the particle size decreasing from 20~25 mm to 15~20 mm, while that is 3152.65 W·m-3·K-1 with the particle size decreasing from 15~20 mm to 10~15 mm. In addition, the variation of the measured value of the Nusselt number with the Reynolds number has the same trend as predicted values obtained by other works. However, there is a considerable deviation in the value. Among them, the minimum value of the mean relative error is 26.81%. It is proved that the previous empirical correlations are no longer applicable, while the predicted value of this work is in good agreement with the measured value with the mean deviation of only 7.61%. Therefore, the modified correlation can accurately predict the gas-solid heat transfer characteristics in the sinter bed, which lays a foundation for the numerical design and optimization of the new process.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46984059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Prasanna, C. Karthik, Subrata Chowdhury, B. Khan
{"title":"Comprehensive Review on Modelling, Estimation, and Types of Faults in Solar Photovoltaic System","authors":"R. Prasanna, C. Karthik, Subrata Chowdhury, B. Khan","doi":"10.1155/2022/3053317","DOIUrl":"https://doi.org/10.1155/2022/3053317","url":null,"abstract":"Solar photovoltaic (SPV) system fault diagnostics is vital in advanced supervision because it can alert users to catastrophic failure or greater risks. To provide green and clean energy using solar, it is mandatory to analyse various faults associated with photovoltaic system which can result in energy deficit and system breakdown and may lead to fire hazards which are often difficult to avoid. Hence, as an endeavour to improve the efficiency level, more study beginning with modelling of SPV system with its parameter estimation and types of SPV faults is aimed in this work.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"9 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41291710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaehwan Lee, Kyoungah Cho, Yoon-Tae Park, Sungeun Park, Hee‐eun Song, Sangsig Kim
{"title":"Performance Enhancement of Hybrid Energy Devices Using Cooling Patches","authors":"Jaehwan Lee, Kyoungah Cho, Yoon-Tae Park, Sungeun Park, Hee‐eun Song, Sangsig Kim","doi":"10.1155/2022/3604240","DOIUrl":"https://doi.org/10.1155/2022/3604240","url":null,"abstract":"In this study, we demonstrated the enhancement of the output power of a hybrid energy device (HED) using a cooling patch that does not consume any external electric power. The HED consisted of a photovoltaic cell (PVC) and a thermoelectric generator (TEG); the cooling patch was attached to the TEG. When the PVC was exposed to solar irradiance, the cooling patch lowered the temperature of the PVC and increased the thermal gradient across the TEG, thereby increasing the output power. For an HED with a cooling patch at an irradiance of 1000 W/m2, the output power increased to 24.2 mW, as compared to the output power of 19.9 mW for an HED without any cooling patch.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48096095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Chitra, N. Gowri, M. Maheswari, Dipesh Uike, N. Medikondu, E. Al-Ammar, A. M. Metwally, Ataul Islam, Abdi Diriba
{"title":"IoT-Based Solar Energy Measurement and Monitoring Model","authors":"L. Chitra, N. Gowri, M. Maheswari, Dipesh Uike, N. Medikondu, E. Al-Ammar, A. M. Metwally, Ataul Islam, Abdi Diriba","doi":"10.1155/2022/5767696","DOIUrl":"https://doi.org/10.1155/2022/5767696","url":null,"abstract":"In the early days, greenhouse energy did not pay much attention to coating inspections and new applications, spending more attention on repair solar energy projects instead. However, these attitudes have recently changed. Energy producers realize that preventing corrosion and deterioration is less expensive than solving the greenhouse problems when they occur. The proposed model also provides coating, paint control, and error analysis services within the scope of solar machinery and equipment-related services while the greenhouse equipment reached a low energy level. The greenhouse monitoring services ensure that a solar plant is economical, reliable, and of high quality, meets legal requirements, conforms to standards published by domestic and foreign organizations, and determines conditions that cause short circuits or power outages. In this context, with the help of cloud computing-based Internet of things (IOT), the industrial power stations, high-voltage substations, low-voltage networks, power stations that comply with legal regulations on safety from electricity, electrical installations for machinery, alarm systems, fire alarm systems, cathodic corrosion protection mechanisms in oil tanks and pipelines, emergency power supply installations, electrical installations in buildings, and gas alarm systems are inspected and documented.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42779676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}