{"title":"内波纹通道光伏/热(PV/T)集热器优化设计的数值研究","authors":"Xiangrui Kong, Yuhan Zhang, Jinshun Wu, S. Pan","doi":"10.1155/2022/8632826","DOIUrl":null,"url":null,"abstract":"This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from 4 mm to 3 mm, the outlet temperature attained is between 298 and 302 K, and the heat collection is in the range of 16.2–51.4 MJ/h. This led to an increase in the amount of heat collected by 18.6%.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels\",\"authors\":\"Xiangrui Kong, Yuhan Zhang, Jinshun Wu, S. Pan\",\"doi\":\"10.1155/2022/8632826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from 4 mm to 3 mm, the outlet temperature attained is between 298 and 302 K, and the heat collection is in the range of 16.2–51.4 MJ/h. This led to an increase in the amount of heat collected by 18.6%.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8632826\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8632826","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels
This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from 4 mm to 3 mm, the outlet temperature attained is between 298 and 302 K, and the heat collection is in the range of 16.2–51.4 MJ/h. This led to an increase in the amount of heat collected by 18.6%.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells