{"title":"Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model","authors":"Mahmut Kaplan","doi":"10.1155/2023/7394007","DOIUrl":"https://doi.org/10.1155/2023/7394007","url":null,"abstract":"The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> at chimney inlet on performance characteristics of the system by employing RNG <svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 25.4837 9.63826\" width=\"25.4837pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.445,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.981,0)\"></path></g></svg> turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"></path></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"></path></g></svg></span><sup>°</sup>–80<sup>°</sup>) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"33 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Ramesh, Ayyappan Susila Praveen, Praveen Bhaskaran Pillai, Sachin Salunkhe, Adham E. Ragab, Hussein M. A. Hussein, Paulo Davim
{"title":"Experimental Study on the Effect of In/Out Radial-Finned Heat Sink with PCM under Constant and Intermittent Power Mode in Power LEDs","authors":"T. Ramesh, Ayyappan Susila Praveen, Praveen Bhaskaran Pillai, Sachin Salunkhe, Adham E. Ragab, Hussein M. A. Hussein, Paulo Davim","doi":"10.1155/2023/2454612","DOIUrl":"https://doi.org/10.1155/2023/2454612","url":null,"abstract":"The findings of the experimental study into optimizing the heat transfer rate of a PCM-based heat sink for high-power LEDs are presented in this work. The study investigated five heat sink types, with and without PCM. The LED case and junction temperatures, LED module temperatures, heat storage and release rate analyses, analyses of three types of cyclic operation modes, luminous flux, and heat sink thermal resistance were all examined independently. The results indicated that the PCM-based LED heat sink had improved thermal performance. The LED junction temperature of the PCM-equipped E-20 heat sink is nine degrees Celsius lower at 10 W than that of the heat sink without PCM. Furthermore, the E-20 heat sink with PCM extends the LED module’s critical lifespan. As a bonus, the E-20 with PCM had a 38.19 percent lower thermal resistance at 10 W than the E-20 without PCM. According to these results, the heat sink E-20 emits 715 lm at 10 W when operated without a phase-change material (PCM). With the same input power, the luminous flux of an E-20 equipped with a heat sink and a phase-change material (PCM) is 750 lm, a gain of 4.7%. Finally, clearly recommend the heat E-20 sink with PCM suitable for high-power LED thermal management system.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"60 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Characterization of PV Minigrid Plants for Modern Farming and Rural Electrification in Rwanda","authors":"Kayitare Morris, Gace A. Dalson, Sendegeya Al-Mas","doi":"10.1155/2023/2570325","DOIUrl":"https://doi.org/10.1155/2023/2570325","url":null,"abstract":"Solar energy is among the clean, ecofriendly, and reliable energies. Standalone PV plants have great potential to fulfill specific load demands in remote villages in Rwanda. However, owing to the scarcity of information on solar energy potentials in some areas, lack of accurate load demands, and overlooking energy consumption by farming activities, PV plants can be hardly optimally sized, developed, or utilized. This study proposes and characterizes the PV plant model based on precisely quantified load demands including the energy needed for e-farming. The technoeconomic performance of these PV plants was analyzed using PVSyst software. The results confirm availability of solar resources enough to steadily satisfy the loads in the communities. Nevertheless, several factors were seen to induce energy losses for the developed PV systems, among which the heating owing to the rise of temperature being the major factor of energy loss. In fact, the solar radiation intensity exceeds 1800 kW/m<sup>2</sup>/year, and the heating occurring at the surface of the panels causes energy losses of up to 9.46%. Also, the findings suggested that the investors will gain the financial benefits for 10 out of 25 years while the energy’s price would drop from 0.252 EUR/kWh to 0.180 EUR/kWh. These findings are significant as they provide information that planners and investors could use to make informed decisions. Future studies may need to use such results to quantify the contribution of available subsidies and incentive reduction on cost of solar energy and adoption of PV plants.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"247 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximum Power Extraction in Photovoltaic Systems Using High-Performance Adaptive Control Approach","authors":"Ahmed Ouaret, Hocine Lehouche, Adel Oubelaid, Arvind Yadav, Boubekeur Mendil, Ievgen Zaitsev","doi":"10.1155/2023/6506144","DOIUrl":"https://doi.org/10.1155/2023/6506144","url":null,"abstract":"The nonlinearities present in photovoltaic (PV) generator models can significantly impact the performance of PV systems, leading to decreased system efficiency and reduced profitability. This paper is aimed at addressing these challenges by developing a novel control algorithm based on a high-performance adaptive control method for photovoltaic systems. The proposed algorithm is designed to effectively track set points and optimize power extraction even in the presence of disturbances. The key contribution of this work lies in the application of this control strategy specifically to PV systems to achieve optimal performance. When compared to traditional control methods, the proposed approach demonstrates significant improvements, notably in terms of power extraction efficiency and system loss reduction. Moreover, the control algorithm effectively ensures accurate tracking of set points. These outcomes underscore the notable performance enhancements facilitated by the proposed algorithm. In conclusion, the developed control algorithm offers superior performance in optimizing power extraction and maintaining precise set point tracking for PV systems, leading to improved system efficiency and increased profitability.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"7 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138745169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Cost-Saving Monofacial PERC Module under Field Conditions in South Korea","authors":"Sungho Hwang, Hae-seok Lee","doi":"10.1155/2023/6681252","DOIUrl":"https://doi.org/10.1155/2023/6681252","url":null,"abstract":"The photovoltaic (PV) industry is constantly striving to increase module power output while decreasing costs. Importantly, the performance and reliability of cost-saving products should be evaluated before being launched into the PV market to avoid any unnecessary side effects. This study investigated the performance of a monofacial module employing a cost-saving bifacial cell installed at a carport in South Korea. The bifacial cell reduces costs, compared to monofacial cell, by using a lower quantity of aluminum paste on its rear; consequently, it has become a popular product in the PV industry. The monofacial module employing the bifacial cell showed an improved voltage temperature coefficient and low-light performance over monofacial cell-based module. Our field data highlight three conclusions from the bifacial cell-based module; it showed (1) different voltage temperature coefficients with better performance at lower temperatures, (2) better low-light performance owing to high series resistance, and (3) high current owing to its bifaciality. Notably, under high irradiance and temperature conditions, the bifacial cell performed worse than the monofacial cell. We concluded that this type of cell may perform well under northern European climatic conditions, though further investigation is required to optimize cell performance under various weather conditions.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"62 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alireza Kermani, Amir Mahdi Jamshidi, Zahra Mahdavi, Amir ali Dashtaki, Mohammad Zand, Morteza Azimi Nasab, Tina Samavat, P. Sanjeevikumar, Baseem Khan
{"title":"Energy Management System for Smart Grid in the Presence of Energy Storage and Photovoltaic Systems","authors":"Alireza Kermani, Amir Mahdi Jamshidi, Zahra Mahdavi, Amir ali Dashtaki, Mohammad Zand, Morteza Azimi Nasab, Tina Samavat, P. Sanjeevikumar, Baseem Khan","doi":"10.1155/2023/5749756","DOIUrl":"https://doi.org/10.1155/2023/5749756","url":null,"abstract":"Today, the desire to use renewable energy as a source of clean and available energy in the grid has increased. Due to the unpredictable behavior of renewable resources, it is necessary to use energy storage resources in the microgrid structure. The power generation source and the storage source in microgrids should be selected in such a way that it has the ability to respond to the maximum demand in the state connected to the grid and operate independently. In this article, the optimal capacity and economic performance of a microgrid based on photovoltaic and battery system have been investigated. In this way, first, using the iterative optimization method, the optimal microgrid capacity has been obtained. Then, the dynamic planning method has been used for optimal microgrid energy management. The simulation results show the accuracy and efficiency of the proposed solutions. The proposed controller, while automatically and dynamically adapting to the solar cell output changes, is capable of responding to external requests, such as price signals or satisfying power system constraints or operator requests. In addition, the results indicate that by using the proposed energy management system, the microgrid system can regain stability during one to two cycles, during the occurrence of PV system radiation changes as well as ESS charge changes. And also, according to the ESS charge changes, the voltage changes should be within the defined permissible range between 0.95 and 1.05 pu, which is the result of the unique efficiency of the proposed energy management system.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"208 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature Distribution Research on Liquid Packaging Structure of Deep UV LEDs","authors":"Zhenghao Xia, Zuojie Wen, Bingqian Li, Fei Wang, Daming Zhang","doi":"10.1155/2023/8012350","DOIUrl":"https://doi.org/10.1155/2023/8012350","url":null,"abstract":"By showing a packaged device model with <span><svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 16.776 8.69875\" width=\"16.776pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.145,0)\"></path></g></svg><span></span><svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"19.6321838 -8.34882 6.415 8.69875\" width=\"6.415pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.682,0)\"><use xlink:href=\"#g113-51\"></use></g></svg></span> chips, the effects of packaging material, device height, chip spacing, thermal conductivity, and viscosity of silicone oil on temperature distribution of deep ultraviolet (UV) light-emitting diodes (LEDs) were investigated by finite element simulation. The results showed that similar temperature distributions in the horizontal and vertical directions were obtained using different packaging materials including gas, solid, and liquid. The lowest maximum temperature (131.7°C) was obtained with liquid packaging compared to the gas packaging (140.8°C) and solid packing (132.5°C). Accompanied by increasing the device height, the maximum temperature of the liquid packaging structure revealed a more significant drop compared to solid packaging. However, that of gas packaging exhibited a rise and saturation. Larger chip spacing and higher thermal conductivity of silicone oil will dramatically reduce the maximum temperature of the liquid packaging device, and a lower maximum temperature and more uniform temperature distribution were obtained by using a lower viscosity packaging material. Therefore, considering the feasibility of the device process, appropriate liquid packaging structures can be optimized, and the maximum temperature of the liquid packaging structure of 102.8°C has been achieved. Liquid packaging may have a certain impact on the reliability of device sealing due to the current immature technology. For high-power light sources, there may also be a certain impact on their lifespan.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"44 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PSO-ANFIS-Based Energy Management in Hybrid AC/DC Microgrid along with Plugin Electric Vehicle","authors":"V. Ashokkumar, C. B. Venkatramanan","doi":"10.1155/2023/2852972","DOIUrl":"https://doi.org/10.1155/2023/2852972","url":null,"abstract":"This study proposes a hybrid AC/DC microgrid with plugin EVs, leveraging PSO-tuned ANFIS for voltage and power control. With the existing control, which faced challenges such as instability and complexity, the proposed approach is aimed at simplifying control through PSO, efficient power sharing, and reduced sample requirements. This innovative method contributes to improved energy management in hybrid microgrids, bridging existing research gaps. This approach streamlines neural transmission in microgrid control, addressing challenges in distributed generation power, load demand, energy storage system SOC, and AC grid power integration. Notably, the proposed PSO-ANFIS simplifies electric vehicle power references using distinct inputs for each mode, trained through PSO. This methodology is tailored for microgrids with varying power profiles, presenting a promising solution for efficient energy management. The proposed EMS was experimentally verified using MATLAB simulations of a small-scale hybrid AC/DC microgrid for every operating mode. The financial dynamics of a microgrid’s power exchange with the main grid are examined through three distinct methodologies: fuzzy logic, ANFIS (adaptive neurofuzzy inference system), and PSO-ANFIS (ANFIS optimized using particle swarm optimization). In case 1, the PSO-ANFIS approach demonstrates its superiority by achieving the lowest grid purchase power cost of 1995.24 Rs/day compared to fuzzy (2243.63 Rs/day) and ANFIS (2150.45 Rs/day), while also yielding the highest revenue from power selling to the microgrid: PSO-ANFIS (668.84 Rs/day) surpassing fuzzy (536.12 Rs/day) and ANFIS (575.35 Rs/day). Similarly, in case 2, PSO-ANFIS proves its efficiency with the lowest net price of 8619.192 Rs/day, showcasing its effectiveness in optimizing financial dynamics. Furthermore, in case 3, the revenue aligns precisely with net prices, indicating the PSO-ANFIS method’s financial advantage, generating the highest revenue of 6544.0224 Rs/day compared to fuzzy (6025.36 Rs/day) and ANFIS (6153.214 Rs/day). These findings underscore the potential utility of the PSO-ANFIS approach in optimizing microgrid operations and enhancing cost-effectiveness across various scenarios.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"24 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135872735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Analysis of Different Control Strategies for Relift Luo Converter","authors":"R. Banupriya, R. Nagarajan, K. R. N. Kalis","doi":"10.1155/2023/8505609","DOIUrl":"https://doi.org/10.1155/2023/8505609","url":null,"abstract":"Dual-output DC to DC converters have drawn attention in the domestic, automobile, and industrial domains. A dual-output converter usually provides a voltage step-down channel and a voltage step-up channel. Typically, an automobile needs a battery charging unit, a traction motor drive, and several other applications. A typical application may require two channels of DC output with a low-voltage (LV) channel and a high-voltage (HV) channel. While the generic boost-derived and quadratic boost-derived dual-output converters are available in the literature, this article focuses on the control aspects of a relift type Luo converter-derived dual-output converter (LDDOC). A solar photovoltaic (SPV) source is the main power, and it charges a battery. The LV loads may be connected across the battery, and the relift stage delivers a regulated 48 V output. The regulation of the 48 V output using a PI controller, a fuzzy logic controller, an ANN-based controller, and a sliding mode controller (SMC) has been studied using simulations. The simulations reveal that the sliding mode controller is advantageous because of meeting out the required performance, easy implementation, and low cost. An experimental setup has also been developed to verify the performance of the sliding mode controller for the regulation of the HV channel output voltage at 48 V.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135767463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Girimurugan, P. Selvaraju, Prabahar Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Hasane Ahammad, S. Mayakannan, Selvakumar Kuppusamy Vaithilingam
{"title":"Application of Deep Learning to the Prediction of Solar Irradiance through Missing Data","authors":"R. Girimurugan, P. Selvaraju, Prabahar Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Hasane Ahammad, S. Mayakannan, Selvakumar Kuppusamy Vaithilingam","doi":"10.1155/2023/4717110","DOIUrl":"https://doi.org/10.1155/2023/4717110","url":null,"abstract":"The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations, missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The projected model is evaluated on the widely available information by simulating missing data in each input series. The performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria. Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136016967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}