R. Girimurugan, P. Selvaraju, Prabahar Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Hasane Ahammad, S. Mayakannan, Selvakumar Kuppusamy Vaithilingam
{"title":"深度学习在缺失数据预测太阳辐照度中的应用","authors":"R. Girimurugan, P. Selvaraju, Prabahar Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Hasane Ahammad, S. Mayakannan, Selvakumar Kuppusamy Vaithilingam","doi":"10.1155/2023/4717110","DOIUrl":null,"url":null,"abstract":"The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations, missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The projected model is evaluated on the widely available information by simulating missing data in each input series. The performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria. Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"20 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Deep Learning to the Prediction of Solar Irradiance through Missing Data\",\"authors\":\"R. Girimurugan, P. Selvaraju, Prabahar Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Hasane Ahammad, S. Mayakannan, Selvakumar Kuppusamy Vaithilingam\",\"doi\":\"10.1155/2023/4717110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations, missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The projected model is evaluated on the widely available information by simulating missing data in each input series. The performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria. Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4717110\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4717110","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of Deep Learning to the Prediction of Solar Irradiance through Missing Data
The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations, missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The projected model is evaluated on the widely available information by simulating missing data in each input series. The performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria. Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells