{"title":"Guaranteed bounds for posterior inference in universal probabilistic programming","authors":"Raven Beutner, Luke Ong, Fabian Zaiser","doi":"10.1145/3519939.3523721","DOIUrl":"https://doi.org/10.1145/3519939.3523721","url":null,"abstract":"We propose a new method to approximate the posterior distribution of probabilistic programs by means of computing guaranteed bounds. The starting point of our work is an interval-based trace semantics for a recursive, higher-order probabilistic programming language with continuous distributions. Taking the form of (super-/subadditive) measures, these lower/upper bounds are non-stochastic and provably correct: using the semantics, we prove that the actual posterior of a given program is sandwiched between the lower and upper bounds (soundness); moreover, the bounds converge to the posterior (completeness). As a practical and sound approximation, we introduce a weight-aware interval type system, which automatically infers interval bounds on not just the return value but also the weight of program executions, simultaneously. We have built a tool implementation, called GuBPI, which automatically computes these posterior lower/upper bounds. Our evaluation on examples from the literature shows that the bounds are useful, and can even be used to recognise wrong outputs from stochastic posterior inference procedures.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114402262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"P4BID: information flow control in p4","authors":"Karuna Grewal, Loris D'antoni, Justin Hsu","doi":"10.1145/3519939.3523717","DOIUrl":"https://doi.org/10.1145/3519939.3523717","url":null,"abstract":"Modern programmable network switches can implement custom applications using efficient packet processing hardware, and the programming language P4 provides high-level constructs to program such switches. The increase in speed and programmability has inspired research in dataplane programming, where many complex functionalities, e.g., key-value stores and load balancers, can be implemented entirely in network switches. However, dataplane programs may suffer from novel security errors that are not traditionally found in network switches. To address this issue, we present a new information-flow control type system for P4. We formalize our type system in a recently-proposed core version of P4, and we prove a soundness theorem: well-typed programs satisfy non-interference. We also implement our type system in a tool, P4BID, which extends the type checker in the p4c compiler, the reference compiler for the latest version of P4. We present several case studies showing that natural security, integrity, and isolation properties in networks can be captured by non-interference, and our type system can detect violations of these properties while certifying correct programs.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131144441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorde Zikelic, B. E. Chang, Pauline Bolignano, F. Raimondi
{"title":"Differential cost analysis with simultaneous potentials and anti-potentials","authors":"Dorde Zikelic, B. E. Chang, Pauline Bolignano, F. Raimondi","doi":"10.1145/3519939.3523435","DOIUrl":"https://doi.org/10.1145/3519939.3523435","url":null,"abstract":"We present a novel approach to differential cost analysis that, given a program revision, attempts to statically bound the difference in resource usage, or cost, between the two program versions. Differential cost analysis is particularly interesting because of the many compelling applications for it, such as detecting resource-use regressions at code-review time or proving the absence of certain side-channel vulnerabilities. One prior approach to differential cost analysis is to apply relational reasoning that conceptually constructs a product program on which one can over-approximate the difference in costs between the two program versions. However, a significant challenge in any relational approach is effectively aligning the program versions to get precise results. In this paper, our key insight is that we can avoid the need for and the limitations of program alignment if, instead, we bound the difference of two cost-bound summaries rather than directly bounding the concrete cost difference. In particular, our method computes a threshold value for the maximal difference in cost between two program versions simultaneously using two kinds of cost-bound summaries---a potential function that evaluates to an upper bound for the cost incurred in the first program and an anti-potential function that evaluates to a lower bound for the cost incurred in the second. Our method has a number of desirable properties: it can be fully automated, it allows optimizing the threshold value on relative cost, it is suitable for programs that are not syntactically similar, and it supports non-determinism. We have evaluated an implementation of our approach on a number of program pairs collected from the literature, and we find that our method computes tight threshold values on relative cost in most examples.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129872982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study of real-world data races in Golang","authors":"Milind Chabbi, M. Ramanathan","doi":"10.1145/3519939.3523720","DOIUrl":"https://doi.org/10.1145/3519939.3523720","url":null,"abstract":"The concurrent programming literature is rich with tools and techniques for data race detection. Less, however, has been known about real-world, industry-scale deployment, experience, and insights about data races. Golang (Go for short) is a modern programming language that makes concurrency a first-class citizen. Go offers both message passing and shared memory for communicating among concurrent threads. Go is gaining popularity in modern microservice-based systems. Data races in Go stand in the face of its emerging popularity. In this paper, using our industrial codebase as an example, we demonstrate that Go developers embrace concurrency and show how the abundance of concurrency alongside language idioms and nuances make Go programs highly susceptible to data races. Google’s Go distribution ships with a built-in dynamic data race detector based on ThreadSanitizer. However, dynamic race detectors pose scalability and flakiness challenges; we discuss various software engineering trade-offs to make this detector work effectively at scale. We have deployed this detector in Uber’s 46 million lines of Go codebase hosting 2100 distinct microservices, found over 2000 data races, and fixed over 1000 data races, spanning 790 distinct code patches submitted by 210 unique developers over a six-month period. Based on a detailed investigation of these data race patterns in Go, we make seven high-level observations relating to the complex interplay between the Go language paradigm and data races.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"21 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131498965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, N. Polikarpova
{"title":"Type-directed program synthesis for RESTful APIs","authors":"Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, N. Polikarpova","doi":"10.1145/3519939.3523450","DOIUrl":"https://doi.org/10.1145/3519939.3523450","url":null,"abstract":"With the rise of software-as-a-service and microservice architectures, RESTful APIs are now ubiquitous in mobile and web applications. A service can have tens or hundreds of API methods, making it a challenge for programmers to find the right combination of methods to solve their task. We present APIphany, a component-based synthesizer for programs that compose calls to RESTful APIs. The main innovation behind APIphany is the use of precise semantic types, both to specify user intent and to direct the search. APIphany contributes three novel mechanisms to overcome challenges in adapting component-based synthesis to the REST domain: (1) a type inference algorithm for augmenting REST specifications with semantic types; (2) an efficient synthesis technique for \"wrangling\" semi-structured data, which is commonly required in working with RESTful APIs; and (3) a new form of simulated execution to avoid executing APIs calls during synthesis. We evaluate APIphany on three real-world APIs and 32 tasks extracted from GitHub repositories and StackOverflow. In our experiments, APIphany found correct solutions to 29 tasks, with 23 of them reported among top ten synthesis results.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"176 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114401824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Warping cache simulation of polyhedral programs","authors":"C. Morelli, J. Reineke","doi":"10.1145/3519939.3523714","DOIUrl":"https://doi.org/10.1145/3519939.3523714","url":null,"abstract":"Techniques to evaluate a program's cache performance fall into two camps: 1. Traditional trace-based cache simulators precisely account for sophisticated real-world cache models and support arbitrary workloads, but their runtime is proportional to the number of memory accesses performed by the program under analysis. 2. Relying on implicit workload characterizations such as the polyhedral model, analytical approaches often achieve problem-size-independent runtimes, but so far have been limited to idealized cache models. We introduce a hybrid approach, warping cache simulation, that aims to achieve applicability to real-world cache models and problem-size-independent runtimes. As prior analytical approaches, we focus on programs in the polyhedral model, which allows to reason about the sequence of memory accesses analytically. Combining this analytical reasoning with information about the cache behavior obtained from explicit cache simulation allows us to soundly fast-forward the simulation. By this process of warping, we accelerate the simulation so that its cost is often independent of the number of memory accesses.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114287593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, K. Sivaramakrishnan
{"title":"Certified mergeable replicated data types","authors":"Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, K. Sivaramakrishnan","doi":"10.1145/3519939.3523735","DOIUrl":"https://doi.org/10.1145/3519939.3523735","url":null,"abstract":"Replicated data types (RDTs) are data structures that permit concurrent modification of multiple, potentially geo-distributed, replicas without coordination between them. RDTs are designed in such a way that conflicting operations are eventually deterministically reconciled ensuring convergence. Constructing correct RDTs remains a difficult endeavour due to the complexity of reasoning about independently evolving states of the replicas. With the focus on the correctness of RDTs (and rightly so), existing approaches to RDTs are less efficient compared to their sequential counterparts in terms of the time and space complexity of local operations. This is unfortunate since RDTs are often used in a local-first setting where the local operations far outweigh remote communication. This paper presents PEEPUL, a pragmatic approach to building and verifying efficient RDTs. To make reasoning about correctness easier, we cast RDTs in the mould of the distributed version control system, and equip it with a three-way merge function for reconciling conflicting versions. Further, we go beyond just verifying convergence, and provide a methodology to verify arbitrarily complex specifications. We develop a replication-aware simulation relation to relate RDT specifications to their efficient purely functional implementations. We implement PEEPUL as an F* library that discharges proof obligations to an SMT solver. The verified efficient RDTs are extracted as OCaml code and used in Irmin, a distributed database built on the principles of Git.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115814142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sankha Narayan Guria, Niki Vazou, M. Guarnieri, James Parker
{"title":"ANOSY: approximated knowledge synthesis with refinement types for declassification","authors":"Sankha Narayan Guria, Niki Vazou, M. Guarnieri, James Parker","doi":"10.1145/3519939.3523725","DOIUrl":"https://doi.org/10.1145/3519939.3523725","url":null,"abstract":"Non-interference is a popular way to enforce confidentiality of sensitive data. However, declassification of sensitive information is often needed in realistic applications but breaks non-interference. We present ANOSY, an approximate knowledge synthesizer for quantitative declassification policies. ANOSY uses refinement types to automatically construct machine checked over- and under-approximations of attacker knowledge for boolean queries on multi-integer secrets. It also provides an AnosyT monad to track the attacker knowledge over multiple declassification queries and checks for violations against user-specified policies in information flow control applications. We implement a prototype of ANOSY and show that it is precise and permissive: up to 14 declassification queries are permitted before a policy violation occurs using the powerset of intervals domain.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"219 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122520738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quickstrom: property-based acceptance testing with LTL specifications","authors":"Liam O'Connor, Oskar Wickström","doi":"10.1145/3519939.3523728","DOIUrl":"https://doi.org/10.1145/3519939.3523728","url":null,"abstract":"We present Quickstrom, a property-based testing system for acceptance testing of interactive applications. Using Quickstrom, programmers can specify the behaviour of web applications as properties in our testing-oriented dialect of Linear Temporal Logic (LTL) called QuickLTL, and then automatically test their application against the given specification with hundreds of automatically generated interactions. QuickLTL extends existing finite variants of LTL for the testing use-case, determining likely outcomes from partial traces whose minimum length is itself determined by the LTL formula. This temporal logic is embedded in our specification language, Specstrom, which is designed to be approachable to web programmers, expressive for writing specifications, and easy to analyse. Because Quickstrom tests only user-facing behaviour, it is agnostic to the implementation language of the system under test. We therefore formally specify and test many implementations of the popular TodoMVC benchmark, used for evaluation and comparison across various web frontend frameworks and languages. Our tests uncovered bugs in almost half of the available implementations.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125583585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, Xinyu Wang
{"title":"WebRobot: web robotic process automation using interactive programming-by-demonstration","authors":"Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, Xinyu Wang","doi":"10.1145/3519939.3523711","DOIUrl":"https://doi.org/10.1145/3519939.3523711","url":null,"abstract":"It is imperative to democratize robotic process automation (RPA), as RPA has become a main driver of the digital transformation but is still technically very demanding to construct, especially for non-experts. In this paper, we study how to automate an important class of RPA tasks, dubbed web RPA, which are concerned with constructing software bots that automate interactions across data and a web browser. Our main contributions are twofold. First, we develop a formal foundation which allows semantically reasoning about web RPA programs and formulate its synthesis problem in a principled manner. Second, we propose a web RPA program synthesis algorithm based on a new idea called speculative rewriting. This leads to a novel speculate-and-validate methodology in the context of rewrite-based program synthesis, which has also shown to be both theoretically simple and practically efficient for synthesizing programs from demonstrations. We have built these ideas in a new interactive synthesizer called WebRobot and evaluate it on 76 web RPA benchmarks. Our results show that WebRobot automated a majority of them effectively. Furthermore, we show that WebRobot compares favorably with a conventional rewrite-based synthesis baseline implemented using egg. Finally, we conduct a small user study demonstrating WebRobot is also usable.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129953699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}