ANOSY: approximated knowledge synthesis with refinement types for declassification

Sankha Narayan Guria, Niki Vazou, M. Guarnieri, James Parker
{"title":"ANOSY: approximated knowledge synthesis with refinement types for declassification","authors":"Sankha Narayan Guria, Niki Vazou, M. Guarnieri, James Parker","doi":"10.1145/3519939.3523725","DOIUrl":null,"url":null,"abstract":"Non-interference is a popular way to enforce confidentiality of sensitive data. However, declassification of sensitive information is often needed in realistic applications but breaks non-interference. We present ANOSY, an approximate knowledge synthesizer for quantitative declassification policies. ANOSY uses refinement types to automatically construct machine checked over- and under-approximations of attacker knowledge for boolean queries on multi-integer secrets. It also provides an AnosyT monad to track the attacker knowledge over multiple declassification queries and checks for violations against user-specified policies in information flow control applications. We implement a prototype of ANOSY and show that it is precise and permissive: up to 14 declassification queries are permitted before a policy violation occurs using the powerset of intervals domain.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519939.3523725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Non-interference is a popular way to enforce confidentiality of sensitive data. However, declassification of sensitive information is often needed in realistic applications but breaks non-interference. We present ANOSY, an approximate knowledge synthesizer for quantitative declassification policies. ANOSY uses refinement types to automatically construct machine checked over- and under-approximations of attacker knowledge for boolean queries on multi-integer secrets. It also provides an AnosyT monad to track the attacker knowledge over multiple declassification queries and checks for violations against user-specified policies in information flow control applications. We implement a prototype of ANOSY and show that it is precise and permissive: up to 14 declassification queries are permitted before a policy violation occurs using the powerset of intervals domain.
方差分析:具有用于解密的细化类型的近似知识综合
不干涉是一种流行的方法来加强敏感数据的机密性。然而,在实际应用中往往需要对敏感信息进行解密,而这又打破了互不干扰的原则。我们提出ANOSY,一个近似的定量解密策略知识综合器。ANOSY使用细化类型来自动构造攻击者知识的机器检查过近似值和欠近似值,用于对多整数秘密的布尔查询。它还提供了一个AnosyT单子,用于通过多个解密查询跟踪攻击者的知识,并检查信息流控制应用程序中是否违反了用户指定的策略。我们实现了ANOSY的原型,并表明它是精确的和允许的:在使用间隔域的幂集发生策略违反之前,最多允许14个解密查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信