{"title":"A Cross-Layer Key Establishment Model for Wireless Devices in Cyber-Physical Systems","authors":"Yuexin Zhang, Yang Xiang, Xinyi Huang","doi":"10.1145/3055186.3055187","DOIUrl":"https://doi.org/10.1145/3055186.3055187","url":null,"abstract":"Wireless communications in Cyber-Physical Systems (CPS) are vulnerable to many adversarial attacks such as eavesdropping. To secure the communications, secret session keys need to be established between wireless devices. In existing symmetric key establishment protocols, it is assumed that devices are pre-loaded with secrets. In the CPS, however, wireless devices are produced by different companies. It is not practical to assume that the devices are pre-loaded with certain secrets when they leave companies. As a consequence, existing symmetric key establishment protocols cannot be directly implemented in the CPS. Motivated by these observations, this paper presents a cross-layer key establishment model for heterogeneous wireless devices in the CPS. Specifically, by implementing our model, wireless devices extract master keys (shared with the system authority) at the physical layer using ambient wireless signals. Then, the system authority distributes secrets for devices (according to an existing symmetric key establishment protocol) by making use of the extracted master keys. Completing these operations, wireless devices can establish secret session keys at higher layers by calling the employed key establishment protocol. Additionally, we prove the security of the proposed model. We analyse the performance of the new model by implementing it and converting existing symmetric key establishment protocols into cross-layer key establishment protocols.","PeriodicalId":140504,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116970677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Guarnizo, Amit Tambe, S. Bhunia, Martín Ochoa, Nils Ole Tippenhauer, A. Shabtai, Y. Elovici
{"title":"SIPHON: Towards Scalable High-Interaction Physical Honeypots","authors":"J. Guarnizo, Amit Tambe, S. Bhunia, Martín Ochoa, Nils Ole Tippenhauer, A. Shabtai, Y. Elovici","doi":"10.1145/3055186.3055192","DOIUrl":"https://doi.org/10.1145/3055186.3055192","url":null,"abstract":"In recent years, the emerging Internet-of-Things (IoT) has led to rising concerns about the security of networked embedded devices. In this work, we propose the SIPHON architecture---a Scalable high-Interaction Honeypot platform for IoT devices. Our architecture leverages IoT devices that are physically at one location and are connected to the Internet through so-called emph{wormholes} distributed around the world. The resulting architecture allows exposing few physical devices over a large number of geographically distributed IP addresses. We demonstrate the proposed architecture in a large scale experiment with 39 wormhole instances in 16 cities in 9 countries. Based on this setup, five physical IP cameras, one NVR and one IP printer are presented as 85 real IoT devices on the Internet, attracting a daily traffic of 700MB for a period of two months. A preliminary analysis of the collected traffic indicates that devices in some cities attracted significantly more traffic than others (ranging from 600 000 incoming TCP connections for the most popular destination to less than 50 000 for the least popular). We recorded over 400 brute-force login attempts to the web-interface of our devices using a total of 1826 distinct credentials, from which 11 attempts were successful. Moreover, we noted login attempts to Telnet and SSH ports some of which used credentials found in the recently disclosed Mirai malware.","PeriodicalId":140504,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125827132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security","authors":"Jianying Zhou, E. Damiani","doi":"10.1145/3055186","DOIUrl":"https://doi.org/10.1145/3055186","url":null,"abstract":"","PeriodicalId":140504,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132172641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}