InsightPub Date : 2023-09-27DOI: 10.1002/inst.12457
Christopher Ritter, Mark Rhoades
{"title":"Incorporating Digital Twins In Early Research and Development of Megaprojects To Reduce Cost and Schedule Risk","authors":"Christopher Ritter, Mark Rhoades","doi":"10.1002/inst.12457","DOIUrl":"https://doi.org/10.1002/inst.12457","url":null,"abstract":"<div>\u0000 \u0000 <p>Early-stage research and development (ESR&D) plays a vital role in the product development lifecycle, necessitating innovative approaches to address the complex challenges faced during this phase. This article quantifies how the incorporation of digital twin (DT) technology can reduce cost and schedule risk during ESR&D and later lifecycle stages in megaprojects. The Idaho National Laboratory demonstrated the application of DT in the Microreactor AGile Non-Nuclear Experimental Testbed (MAGNET) operations phase, showcasing the transformative potential of DT in both design and operation. These advances allowed real-time assessment of construction changes and their impact on project requirements. By focusing on the benefits of digital twinning, this article aims to promote a more positive attitude toward the incorporation of digital twin technologies in the early stages of R&D projects.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 3","pages":"57-65"},"PeriodicalIF":1.1,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50155109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-27DOI: 10.1002/inst.12454
Susan Ruth
{"title":"An Approach to Bridging the Gap Between the Attainment of Research Objectives and System Application","authors":"Susan Ruth","doi":"10.1002/inst.12454","DOIUrl":"https://doi.org/10.1002/inst.12454","url":null,"abstract":"<div>\u0000 \u0000 <p>The aerospace industry has widely adopted the use of technology readiness levels (TRLs), (NASA) which describe the maturity of a technology from earliest stages of research through the operational system. In using TRLs, it has been observed that bridging the gap between research on a technology and its incorporation by engineers into a system is challenging. Nominally, the transition from TRL 4, defined as a component and/or breadboard validation in a laboratory environment, to TRL 7, defined as a system prototype demonstration in an operational environment, is a programmatic gap known as the “valley of death.” The valley of death is a schism whereby the component that incorporates the new technology fails to meet the eventual system requirements. The goal of this paper is to provide a methodology and “language” that enables the researchers and engineers to communicate more effectively to traverse this gap. The basis for this methodology is the combination of established methods for communicating progress for a program combined with the development and application of domain assessments. Domain readiness levels (DRLs), analogs of the TRLs, are specific to the domains relevant to the system of interest. Specifically, the methodology is intended to enable two-way communication between the domain experts and the systems engineer, with the goal of effective incorporation of a technology. This paper will use an example of the approach to bridge the “valley of death” targeted on the development of a satellite composites optical support structure that must stay in focus across the temperature range of 77-323 degrees Kelvin. In this example, the communication will use two relevant domains, materials and processes, to illustrate the methodology.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 3","pages":"33-38"},"PeriodicalIF":1.1,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50155103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-27DOI: 10.1002/inst.12455
Adam D. Williams
{"title":"Enhancing Early Systems R&D Capabilities with Systems —Theoretic Process Analysis","authors":"Adam D. Williams","doi":"10.1002/inst.12455","DOIUrl":"https://doi.org/10.1002/inst.12455","url":null,"abstract":"<div>\u0000 \u0000 <p>Systems engineering today faces a wide array of challenges, ranging from new operational environments to disruptive technological — necessitating approaches to improve research and development (R&D) efforts. Yet, emphasizing the Aristotelian argument that the “whole is greater than the sum of its parts” seems to offer a conceptual foundation creating new R&D solutions. Invoking systems theoretic concepts of emergence and hierarchy and analytic characteristics of traceability, rigor, and comprehensiveness is potentially beneficial for guiding R&D strategy and development to bridge the gap between theoretical problem spaces and engineering-based solutions. In response, this article describes systems–theoretic process analysis (STPA) as an example of one such approach to aid in early-systems R&D discussions. STPA—a ‘top-down’ process that abstracts real complex system operations into hierarchical control structures, functional control loops, and control actions—uses control loop logic to analyze how control actions (designed for desired system behaviors) may become violated and drive the complex system toward states of higher risk. By analyzing how needed controls are not provided (or out of sequence or stopped too soon) and unneeded controls are provided (or engaged too long), STPA can help early-system R&D discussions by exploring how requirements and desired actions interact to either mitigate or potentially increase states of risk that can lead to unacceptable losses. This article will demonstrate STPA's benefit for early-system R&D strategy and development discussion by describing such diverse use cases as cyber security, nuclear fuel transportation, and US electric grid performance. Together, the traceability, rigor, and comprehensiveness of STPA serve as useful tools for improving R&D strategy and development discussions. Leveraging STPA as well as related systems engineering techniques can be helpful in early R&D planning and strategy development to better triangulate deeper theoretical meaning or evaluate empirical results to better inform systems engineering solutions.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 3","pages":"39-46"},"PeriodicalIF":1.1,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50155104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-27DOI: 10.1002/inst.12452
Ann Hodges, Arno Granados
{"title":"A Bridge Blueprint to Span the Chasm Between Research and Engineering — A Framework for Systems Engineering in Early-Stage Research and Development","authors":"Ann Hodges, Arno Granados","doi":"10.1002/inst.12452","DOIUrl":"https://doi.org/10.1002/inst.12452","url":null,"abstract":"<div>\u0000 \u0000 <p>Researchers and funding organizations often do not understand the value of systems engineering in early-stage projects (technology readiness levels TRL 1-5), during which systems engineering may be viewed as an unnecessary cost, and as a process heavy effort applicable only for mature technologies. This may result in a relative lack of engineering rigor and lack of understanding of innovation context which often contributes to failures in the “valley of death” between fundamental research and applied development.</p>\u0000 <p>We argue there is more than one pathway for crossing the valley of death, and that relevant application of systems engineering implemented at an appropriate level of rigor provides a foundation for transition and use of technical innovation. This article discusses the principles and foundational elements necessary for development and use of a framework for systems engineering applicable in early-stage research and development (ESR&D), including tailoring considerations associated with TRL and stakeholder roles. Associated framework metrics are suggested to enable evaluation and practical implementation of the framework for systems engineering innovation management at this phase of technology development.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 3","pages":"15-25"},"PeriodicalIF":1.1,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50155101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-01DOI: 10.1784/insi.2023.65.9.508
P M Adams, S Kenderian, A Gregorian
{"title":"A digital radiography study of the detectability of simulated cracks in 301 stainless steel","authors":"P M Adams, S Kenderian, A Gregorian","doi":"10.1784/insi.2023.65.9.508","DOIUrl":"https://doi.org/10.1784/insi.2023.65.9.508","url":null,"abstract":"A series of simulated cracks in 301 stainless steel (SS), consisting of slits with depths from 12.8% to 40% of the plate thickness, is fabricated in this study. The examination includes a microfocus X-ray tube and a digital detector array (DDA) with 0.075 mm pixels at three angles of incidence (0°, 5° and 10°). The basis of the methodology for the minimum detectable slit width stems from the noise statistics in the images and a minimum detectable contrast-to-noise ratio (CNR) of 3. These minimum detectable widths range from 0.019 mm to 0.003 mm for 12.8%-deep and 40.0%-deep slits, respectively, for the 0° incidence condition. As the incident angle increases to 10°, the size of the minimum detectable slit width also increases, up to a factor of two for the shallower slits. It is noted that these simulated cracks, which have straight parallel sides and flat bottoms, do not accurately represent natural cracks that have irregular paths and taper at depth. Therefore, the results in this study represent the best scenario for detection, establishing some bounds of crack width detectability.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"307 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-01DOI: 10.1784/insi.2023.65.9.514
Fuchen Zhang, Zecheng Sun
{"title":"Finite element analysis of magnetomechanical coupling behaviour of perforated steel plate","authors":"Fuchen Zhang, Zecheng Sun","doi":"10.1784/insi.2023.65.9.514","DOIUrl":"https://doi.org/10.1784/insi.2023.65.9.514","url":null,"abstract":"In this paper, finite element analysis is carried out for the stress of a 45# steel specimen with a round hole and its correlation with a magnetic signal. The leakage magnetic field signals of the specimen under different loads are obtained. The results show that the greater the tensile stress is, the greater the stress is at 2 mm above the round hole, and the permeability first increases and then decreases with the increase in stress. The leakage magnetic field signal is correlated with permeability and the tangential component of the magnetic flux leakage signal has a trend of increasing first and then decreasing. The phenomenon of zero crossing of the normal component of the leakage magnetic field signal appears.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-01DOI: 10.1784/insi.2023.65.9.492
Rui Pan, Wei Gao, Yunbo Zuo, Guoxin Wu, Yuda Chen
{"title":"Investigation into defect image segmentation algorithms for galvanised steel sheets under texture backgrounds","authors":"Rui Pan, Wei Gao, Yunbo Zuo, Guoxin Wu, Yuda Chen","doi":"10.1784/insi.2023.65.9.492","DOIUrl":"https://doi.org/10.1784/insi.2023.65.9.492","url":null,"abstract":"Image segmentation is a significant step in image analysis and computer vision. Many entropy-based approaches have been presented on this topic. Among them, Tsallis entropy is one of the best-performing methods. In this paper, the surface defect images of galvanised steel sheets were studied. A two-dimensional asymmetric Tsallis cross-entropy image segmentation algorithm based on chaotic bee colony algorithm optimisation was used to investigate the segmentation of surface defects under complex texture backgrounds. On the basis of Tsallis entropy threshold segmentation, a more concise expression form was used to define the asymmetric Tsallis cross-entropy in order to reduce the calculation complexity of the algorithm. The chaotic algorithm was combined with the artificial bee colony (ABC) algorithm to construct the chaotic bee colony algorithm, so that the optimal threshold of Tsallis entropy could be quickly identified. The experimental results showed that compared with the maximum Shannon entropy algorithm, the calculation time of this algorithm decreased by about 58% and the threshold value increased by about (26%, 54%). Compared with the two-dimensional Tsallis cross-entropy algorithm, the calculation time of this algorithm decreased by about 35% and about 20% was improved in the g-axis direction only. Compared with the two-dimensional asymmetric Tsallis cross-entropy algorithm, the calculation time of this algorithm decreased by about 30% and the threshold values of the two algorithms were almost the same. The algorithm proposed in this paper can rapidly and effectively segment defect targets, making it a more suitable method for detecting surface defects in factories with a rapid production pace.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-01DOI: 10.1784/insi.2023.65.9.484
R Hanna, M Sutcliffe, D Carswell, P Charlton, S Mosey
{"title":"Volume integral model for algebraic image reconstruction and computed tomography","authors":"R Hanna, M Sutcliffe, D Carswell, P Charlton, S Mosey","doi":"10.1784/insi.2023.65.9.484","DOIUrl":"https://doi.org/10.1784/insi.2023.65.9.484","url":null,"abstract":"Industrial computed tomography (CT) has seen widespread adoption as an inspection technique due to its ability to resolve small defects and perform high-resolution measurements on complex structures. The reconstruction of CT data is usually performed using filtered back-projection (FBP) methods, such as the Feldkamp-Davis-Kress (FDK) method, and are selected as they offer a good compromise between reconstruction time and quality. More recently, iterative reconstruction algorithms have seen a resurgence in research interest as computing power has increased. Iterative reconstruction algorithms, such as the algebraic reconstruction technique (ART), use a reconstruction approach based on linear algebra to determine voxel attenuation coefficients based on the measured attenuation of the sample at the detector and calculation of the ray paths traversing the voxel grid. This offers a more precise model for CT reconstruction but at the cost of computational complexity and reconstruction time. Existing ART implementations are based on the 2D weighting models of the binary integral method (BIM), line integral method (LIM) and area integral method (AIM). For full 3D reconstruction, BIM and LIM only offer approximations leading to numerical inaccuracies. AIM for 2D reconstruction is mathematically exact but considers the divergent nature of a fan beam for 2D only. For a full 3D volumetric reconstruction, the X-ray cone beam is divergent in all directions and therefore AIM cannot be applied in its current form. A novel voxel weighting method for 3D volumetric image reconstruction using ART and providing a mathematically exact fractional volume weighting is introduced in this paper and referred to as the volume integral method (VIM). A set of algorithms is provided based on computer graphics techniques to determine ray/voxel intersections with volume reconstruction computed based on the divergence theorem. A set of experimental configurations is developed to provide a comparison against existing methods and conclusions are provided. Optimisation is achieved through graphic acceleration.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-09-01DOI: 10.1784/insi.2023.65.9.501
J Ahmad, R Mulaveesala
{"title":"Automatic defect detection in a steel sample using frequency-modulated thermal wave imaging","authors":"J Ahmad, R Mulaveesala","doi":"10.1784/insi.2023.65.9.501","DOIUrl":"https://doi.org/10.1784/insi.2023.65.9.501","url":null,"abstract":"Non-stationary thermal wave imaging (NSTWI) techniques are primarily used to assess material properties and structural integrity without damaging a structure. Frequency-modulated thermal wave imaging (FMTWI) is a well-known NSTWI approach that uses a low-peak power heat source to examine structures in a reasonable experimentation time. Recently, various methods, such as pulse compression, Fourier transform, principal component analysis (PCA) and independent component analysis (ICA), have been introduced to handle the non-linearity of transient thermal signatures. However, handling non-linearity and developing a fully automatic defect detection system remains very challenging due to certain limitations of the aforementioned methods. To overcome these problems, this paper proposes an artificial neural network (ANN) for the identification of subsurface flaws in a mild steel sample investigated using the FMTWI approach. The accuracy and the performance of the proposed neural network (NN) are evaluated through a confusion matrix and region of convergence (ROC) analysis for the classification of defective and healthy pixels in an infrared image sequence. The developed NN model has achieved 99.7% accuracy in classifying the pixels correctly.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-06-28DOI: 10.1002/inst.12442
Matthew Hause
{"title":"Agile MBSE: Doing the Same Thing We Have Always Done, but in an Agile Way with Models","authors":"Matthew Hause","doi":"10.1002/inst.12442","DOIUrl":"https://doi.org/10.1002/inst.12442","url":null,"abstract":"<div>\u0000 \u0000 <p>Agile systems engineering is not new. Work has progressed on this for many years to the point that criteria has been established regarding best practice as well as a means of quantifying adherence. The future of systems engineering (FuSE) initiative is reexamining how agile systems engineering fits into the FuSE (Willette et al. 2021). As model-based systems engineering (MBSE) is also a FuSE theme, it is only proper to look at how agile systems engineering and MBSE complement and enable each other. This article examines some of the aspects of MBSE–specifically the Systems Modeling Language® (SysML) – and show at how an agile approach to MBSE can help with the concepts of stakeholder engagement, continual integration, and dynamic learning and evolution. For reasons of space, the article will only provide minimal definitions and explanations of the basics of MBSE, agile, and SysML and as these are well known concepts.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 2","pages":"31-33"},"PeriodicalIF":1.1,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50147043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}