LAScarQS@MICCAI最新文献

筛选
英文 中文
Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net 利用边界聚焦nnU-Net自动分割大磁共振左心房和疤痕
LAScarQS@MICCAI Pub Date : 2023-04-27 DOI: 10.48550/arXiv.2304.14071
Yuchen Zhang, Y. Meng, Yalin Zheng
{"title":"Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net","authors":"Yuchen Zhang, Y. Meng, Yalin Zheng","doi":"10.48550/arXiv.2304.14071","DOIUrl":"https://doi.org/10.48550/arXiv.2304.14071","url":null,"abstract":"Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model's superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98% and 64.08% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115094108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UGformer for Robust Left Atrium and Scar Segmentation Across Scanners 鲁棒左心房和跨扫描仪疤痕分割的UGformer
LAScarQS@MICCAI Pub Date : 2022-10-11 DOI: 10.48550/arXiv.2210.05151
Tianyi Liu, Size Hou, Jiayu Zhu, Zilong Zhao, Haochuan Jiang
{"title":"UGformer for Robust Left Atrium and Scar Segmentation Across Scanners","authors":"Tianyi Liu, Size Hou, Jiayu Zhu, Zilong Zhao, Haochuan Jiang","doi":"10.48550/arXiv.2210.05151","DOIUrl":"https://doi.org/10.48550/arXiv.2210.05151","url":null,"abstract":"Thanks to the capacity for long-range dependencies and robustness to irregular shapes, vision transformers and deformable convolutions are emerging as powerful vision techniques of segmentation.Meanwhile, Graph Convolution Networks (GCN) optimize local features based on global topological relationship modeling. Particularly, they have been proved to be effective in addressing issues in medical imaging segmentation tasks including multi-domain generalization for low-quality images. In this paper, we present a novel, effective, and robust framework for medical image segmentation, namely, UGformer. It unifies novel transformer blocks, GCN bridges, and convolution decoders originating from U-Net to predict left atriums (LAs) and LA scars. We have identified two appealing findings of the proposed UGformer: 1). an enhanced transformer module with deformable convolutions to improve the blending of the transformer information with convolutional information and help predict irregular LAs and scar shapes. 2). Using a bridge incorporating GCN to further overcome the difficulty of capturing condition inconsistency across different Magnetic Resonance Images scanners with various inconsistent domain information. The proposed UGformer model exhibits outstanding ability to segment the left atrium and scar on the LAScarQS 2022 dataset, outperforming several recent state-of-the-arts.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"272 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133852040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network 多深度边界感知左心房疤痕分割网络
LAScarQS@MICCAI Pub Date : 2022-08-08 DOI: 10.48550/arXiv.2208.04940
Meng-Yun Wu, Wangbin Ding, Mingjing Yang, Liqin Huang
{"title":"Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network","authors":"Meng-Yun Wu, Wangbin Ding, Mingjing Yang, Liqin Huang","doi":"10.48550/arXiv.2208.04940","DOIUrl":"https://doi.org/10.48550/arXiv.2208.04940","url":null,"abstract":"Automatic segmentation of left atrial (LA) scars from late gadolinium enhanced CMR images is a crucial step for atrial fibrillation (AF) recurrence analysis. However, delineating LA scars is tedious and error-prone due to the variation of scar shapes. In this work, we propose a boundary-aware LA scar segmentation network, which is composed of two branches to segment LA and LA scars, respectively. We explore the inherent spatial relationship between LA and LA scars. By introducing a Sobel fusion module between the two segmentation branches, the spatial information of LA boundaries can be propagated from the LA branch to the scar branch. Thus, LA scar segmentation can be performed condition on the LA boundaries regions. In our experiments, 40 labeled images were used to train the proposed network, and the remaining 20 labeled images were used for evaluation. The network achieved an average Dice score of 0.608 for LA scar segmentation.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"350 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126951274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Automatic Semi-supervised Left Atrial Segmentation Using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge LAScarQS 2022挑战赛中基于深度监督3DResUnet和伪标记方法的自动半监督左心房分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_15
Moona Mazher, Abdul Qayyum, M. Abdel-Nasser, D. Puig
{"title":"Automatic Semi-supervised Left Atrial Segmentation Using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge","authors":"Moona Mazher, Abdul Qayyum, M. Abdel-Nasser, D. Puig","doi":"10.1007/978-3-031-31778-1_15","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_15","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114977137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium TESSLA:左心房两阶段整体疤痕分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_10
S. Ogbomo-Harmitt, Jakub Grzelak, A. Qureshi, A. King, O. Aslanidi
{"title":"TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium","authors":"S. Ogbomo-Harmitt, Jakub Grzelak, A. Qureshi, A. King, O. Aslanidi","doi":"10.1007/978-3-031-31778-1_10","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_10","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114155623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion 基于多尺度决策级融合的左心房跨域分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_12
Feiyan Li, Weisheng Li
{"title":"Cross-Domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion","authors":"Feiyan Li, Weisheng Li","doi":"10.1007/978-3-031-31778-1_12","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_12","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131870488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation 基于多项式损失和不确定性信息的稳健左心房和疤痕量化分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_13
T. Arega, S. Bricq, F. Mériaudeau
{"title":"Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation","authors":"T. Arega, S. Bricq, F. Mériaudeau","doi":"10.1007/978-3-031-31778-1_13","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_13","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123350071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Automated Segmentation of the Left Atrium and Scar Using Deep Convolutional Neural Networks 基于深度卷积神经网络的左心房和疤痕自动分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_14
K. Punithakumar, M. Noga
{"title":"Automated Segmentation of the Left Atrium and Scar Using Deep Convolutional Neural Networks","authors":"K. Punithakumar, M. Noga","doi":"10.1007/978-3-031-31778-1_14","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_14","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131246644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images 边缘增强特征引导下LGE MRI左心房和瘢痕的关节分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_9
Siping Zhou, Kaini Wang, Guangquan Zhou
{"title":"Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images","authors":"Siping Zhou, Kaini Wang, Guangquan Zhou","doi":"10.1007/978-3-031-31778-1_9","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_9","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127896003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep U-Net Architecture with Curriculum Learning for Left Atrial Segmentation 基于课程学习的深度U-Net结构左心房分割
LAScarQS@MICCAI Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_11
Lei Jiang, Yan Li, Y. Wang, Hengfei Cui, Yong Xia, Yanning Zhang
{"title":"Deep U-Net Architecture with Curriculum Learning for Left Atrial Segmentation","authors":"Lei Jiang, Yan Li, Y. Wang, Hengfei Cui, Yong Xia, Yanning Zhang","doi":"10.1007/978-3-031-31778-1_11","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_11","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127187330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信