Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net

Yuchen Zhang, Y. Meng, Yalin Zheng
{"title":"Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net","authors":"Yuchen Zhang, Y. Meng, Yalin Zheng","doi":"10.48550/arXiv.2304.14071","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model's superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98\\% and 64.08\\% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAScarQS@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.14071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model's superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98\% and 64.08\% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.
利用边界聚焦nnU-Net自动分割大磁共振左心房和疤痕
心房颤动(AF)是最常见的心律失常。准确分割左心房(LA)和LA疤痕可以为预测房颤的治疗结果提供有价值的信息。在本文中,我们提出使用晚期钆增强磁共振成像(lge - mri)自动分割左心房(LA)腔和量化LA疤痕。我们采用nnU-Net作为基线模型,利用LA边界特征的重要性,以TopK损失作为损失函数。具体而言,在训练过程中实现了对LA边界像素的关注,从而提供了更准确的边界预测。另一方面,将预测的LA边界的距离图变换作为LA疤痕预测的额外输入,为疤痕位置提供了边缘约束。我们进一步设计了一种新的不确定性感知模块(UAM),以产生更好的结果与高不确定性的预测。在LAScarQS 2022数据集上的实验证明了我们的模型在LA空腔和LA疤痕分割上的优越性能。具体来说,我们在LA腔和疤痕分割上分别获得了88.98%和64.08%的Dice系数。我们将在https://github.com/level6626/Boundary-focused-nnU-Net上公开我们的实现代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信