O. Corbi, A. Baratta, I. Corbi, F. Tropeano, Eugenio Liccardo
{"title":"Design issues for smart isolation of structures: past and recent research","authors":"O. Corbi, A. Baratta, I. Corbi, F. Tropeano, Eugenio Liccardo","doi":"10.54113/j.sust.2021.000001","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000001","url":null,"abstract":"The paper focuses on a number of original researches developed by the authors concerned with the development of new design approaches for smart base isolation systems for structures. Base Isolation (BI) systems represent the first kind of control devices applied to civil structures. In the paper, advancement in technology is exploited in this field, allowing to conceive new BI typologies possibly based on the adoption of special smart materials or on the coupling of the basic passive device with additional corrective devices, in such a way to minimize the disadvantages deriving from the simply passive system. Illustrated procedures also embed in the design pattern of base-isolation systems the interaction effects between structure and soil in order to provide the best tuning of the isolation parameters and to get the maximum performance of the devices, finally summarizing a number of original approaches to design under passive, semi-active and hybrid modes.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122558084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of mechanical behavior of structural laminated bamboo lumber","authors":"A. Dauletbek, Haitao Li, Z. Xiong, R. Lorenzo","doi":"10.54113/j.sust.2021.000004","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000004","url":null,"abstract":"The transition of the construction sector to sustainable development mostly depends on the environmental friendliness of building materials. This, in turn, calls for the development of new, strong, and sustainable materials that would be a worthy alternative for traditional materials, including wood. Over the past decade, laminated bamboo lumber (LBL) has received much attention from engineers, practitioners, and scientists for its attractive mechanical properties, comparable to and in some cases superior to hard and softwood. Moreover, the sustainability of LBL is characterized by its high carbon sequestration, fast time to harvest, high yield, and low energy consumption for processing. However, the behavior of LBL is not yet fully understood, which in turn affects the low awareness and application of the material by practitioners and engineers around the world. Since LBL has a promising future, this article will contribute to a better understanding of its mechanical properties and a more accurate design, taking into account the influencing factors. This article discusses the mechanical properties of three types of structural LBL, namely beams, columns, and sheathing panels. The previous works of researchers on the mechanical properties of structural LBL were reviewed, and thus the most common failure modes, the causes of the destruction of structural elements, and the factors that affect their behavior were discussed and described. This work will serve as a reference for current practitioners and future research.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130366366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Material characterization and structural response under earthquake loads of hakka rammed earth buildings","authors":"Ruifeng Liang, D. Stanislawski, G. Hota","doi":"10.54113/j.sust.2021.000003","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000003","url":null,"abstract":"Hakka Tulou are rammed earth buildings that have survived material aging, natural weathering and earthquakes for hundreds of years. Previous paper has reported our observations and findings from nondestructive evaluations in field with focus on the integrity of the rammed earth outer walls and inner timber structures as well as the thermal comfort of living in these buildings [1]. This paper presents the structural response of Tulou buildings under earthquake loads using material data from field and employing finite element (FE) analysis program. The material characterization included scanning electron microscopy and compression strength/modulus of rammed earth samples and wall reinforcements, revealing their high strength and durability. The FE analyses were conducted on unreinforced Huanji Tulou as per the simplified lateral force analysis procedure defined by the Code ASCE-7 under three types of wall conditions: 1) unreinforced rammed earth outer wall only, 2) reinforced rammed earth outer wall without inner wooden structures, and 3) unreinforced rammed earth outer wall with inner wooden structures. The FE modeling revealed that the existing large crack in the outer earth wall of Huanji Tulou would not have developed under a strong earthquake load if the earth walls were reinforced. Furthermore, the high volume rammed earth wall integrated with inner timber structures would have offered the building unique earthquake resistance.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126876469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural design and construction of an office building with laminated bamboo lumber","authors":"Adam Guo","doi":"10.54113/j.sust.2021.000010","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000010","url":null,"abstract":"With so many advantages such as environmental friendliness, fast-growing, high strength-to-weight ratio, sustainability, and the capability of being reused or recycled, bamboo structures has gained more and more attention for scientists. This paper shows the feasibility of the design of an office building using laminated bamboo lumbers in compliance with the Chinese standards as GB50009-2012, GB50011-2010, GB50016-2014, and GB 50005-2017. Detailed information about the materials and building were offered. A lot of related construction photos were offer to show the building process. This case is a very good application example for laminated bamboo lumber buildings and has attracted many engineers’ attention in industrial field. Laminated bamboo lumber structures should have a bright future. It should become one main structure form in civil engineering area. However, due to none existing engineered bamboo structures design standard now, engineers have to take reference to standards for timber structures. Setting up the standard system is very important for engineered bamboo structures’ application. Through more and more scientists’ hard working, it might be not a long way to build the code system.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131982806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State-of-the-art review on the use of lignocellulosic biomass in cementitious materials","authors":"Adam Guo","doi":"10.54113/j.sust.2023.000023","DOIUrl":"https://doi.org/10.54113/j.sust.2023.000023","url":null,"abstract":"The lignocellulosic biomass wastes cause some burden on the environment; meanwhile, the concrete industry is faced with large amounts of carbon dioxide emissions and raw mineral materials consumption. The use of lignocellulosic biomass wastes in cementitious materials not only provides an alternative to deal with the wastes but also favors the sustainable development of concrete industry. This review first introduces the characteristics of lignocellulosic biomass and then examines its effect on the mechanical properties, shrinkage, cracking, and some other properties of cement composites. Results show that lignocellulosic biomass can be directly used for three purposes: reinforcements, aggregates, and cement replacements. Although the lignocellulosic biomass cannot always enhance the mechanical properties of cementitious materials, it can improve toughness, shrinkage, cracking, heat insulation, etc. Additionally, some concerns with the use of lignocellulosic biomass are summarized, for which some physical and chemical modification methods (heating treatment, boiling treatment, torrefaction treatment, etc.) are identified to change the structure or remove amorphous components of lignocellulose biomass or prevent it from directly contacting cementitious materials. This review can provide some guidance for designing sustainable cementitious materials with lignocellulosic biomass.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126949367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D printed concrete components and structures: an overview","authors":"Adam Guo","doi":"10.54113/j.sust.2021.000006","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000006","url":null,"abstract":"This paper aims to present an overview and explore components or structures suitable for 3D printed concrete. Most traditional structural forms are not well suitable for 3D printed concrete. To be more specific, it cannot fully consider the characteristics and advantages of 3D printing such as individualization and digitalization. Several 3D-printing-specific structure forms (including hollow form, tree form, arch form, and structure-functional form) are classified and the relevant successful cases are demonstrated. Moreover, the application potential of 3D printed concrete structures is illustrated and the limitations as well as the solutions for the application of 3D printed concrete in practical projects are also summarized. Based on the classification of different reinforcement materials, several reinforcement methods are intensively discussed for 3D printed concrete including steel bars, fibers and other reinforcement materials. The comparison of economic and environmental benefits between 3D concrete printing technology and traditional construction method is discussed respectively. Finally, the expected evolution of 3D printed structures is put forward and recommended.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130504900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"I-shaped ECC/UHPC composite beams reinforced with steel bars and BFRP sheets","authors":"Adam Guo","doi":"10.54113/j.sust.2023.000022","DOIUrl":"https://doi.org/10.54113/j.sust.2023.000022","url":null,"abstract":"This paper proposes a new type of small-sized I-shaped engineered cementitious composite (ECC)/ ultra-high performance concrete (UHPC) composite beam which has the potential to be suitable for corrosive environments. The lower tensile part of the beam was made of ECC material (2/3 of the height), and the top compressive part was made of UHPC material (1/3 of the height). Inner embedded steel bars and surface-bonded basalt fiber reinforced polymer (BFRP) sheets were adopted as the reinforcing materials in combination. A total of nine I-shaped beams were designed and tested under four-point bending test. The influence of parameters such as the ratio of the embedded tensile steel bars, the top UHPC flange, and the surface bonded tensile BFRP sheet on the behavior of the beams was investigated. The results showed that the I-shaped ECC/UHPC composite beams have excellent comprehensive performance, and thanks to the ultra-high durability of the component materials, they have ultra-high durability that ordinary I-steel beams do not have and thus have broad application prospects in corrosive environments. The shear resistance capacity of the thin-walled ECC web needs to be further improved, and UHPC is recommended for the web in the follow-up study.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121461982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of including biomass on the rheological and pozzolanic properties of Portland limestone cement- case study","authors":"Adam Guo","doi":"10.54113/j.sust.2023.000024","DOIUrl":"https://doi.org/10.54113/j.sust.2023.000024","url":null,"abstract":"Various investigations have been presented on the possibility of using agro-allied industry waste in concrete, with the goal of achieving a cleaner environment and environmentally friendly construction. Biomass fly ash (BFA) and limestone clinker are waste from steam/power plants and the cement industry, respectively, and are of high relevance to economic and environmental problems. The effect of including biomass on the rheological and pozzolanic properties of Portland limestone cement (PLC) pastes are presented. The BFA was used as partial replacement for PLC as supplementary cementitious materials (SCMs). The rheological properties (yield stress, viscosity and thixotropy) of the cement paste were determined using a parallel-plate rotational rheometer. The pozzolanic properties were determined using thermogravimetric analysis (TGA) by measuring the amount of calcium hydroxide (CH), and calcium silicate hydrate (CSH) of the hydrated paste, as well as the reaction kinetics. Different characterization techniques including X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM) were used to study the microstructure and mineralogy of the BFA. It was observed that the mineral composition of the biomass fly ash is like class C fly ash. At 15% of cement replacement the paste exhibits better rheological properties: lower yield stress and lower viscosity up till 120 min after mixing, which is an important factor in ready-mix concrete plants. However, a better pozzolanic behavior was observed at 20% cement replacement. From the results obtained, the properties of the paste containing BFA is very sensitive to water/binder ratio (w/b). Above 20% cement replacement, it is suggested to use viscosity modifying agent (VMA) to get a better rheology and pozzolanic behavior.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114663076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and evaluation of load-bearing fiber reinforced polymer composite panel systems with tongue and groove joints","authors":"Adam Guo","doi":"10.54113/j.sust.2021.000008","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000008","url":null,"abstract":"This paper focuses on recent advances made in design, development, manufacturing, evaluation and modeling of load bearing fiber reinforced polymer (FRP) composite sandwich panel systems including tongue and groove joints. Several processes have been researched in collaboration with industry partners for production of composite panels, including: 1) pultrusion, 2) high temperature resin spread and infusion, 3) vacuum assisted resin transfer molding (VARTM), and 4) compression molding. The advantages and disadvantages of each process are discussed with emphasis on the high temperature resin infusion process. Composite laminates are characterized in terms of strength and stiffness under tension, bending, and shear in relation to longitudinal and transverse fiber orientations. Thermo-mechanical properties of the FRP composite sandwich panels including joint responses are presented in terms of: 1) the above different processes, 2) carbon fiber versus E-glass fiber, 3) vinyl ester resin versus epoxy resin, and 4) joint design and efficiency. The sandwich panels are evaluated at component and full scales under static four point bending loads and further analyzed using classical finite element models for their mechanical responses.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116315103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Ponzo, Di Cesare Antonio, Lamarucciola Nicla, D. Nigro
{"title":"Experimental estimation of energy dissipated by multistorey post-tensioned timber framed buildings with anti-seismic dissipative devices","authors":"F. Ponzo, Di Cesare Antonio, Lamarucciola Nicla, D. Nigro","doi":"10.54113/j.sust.2021.000007","DOIUrl":"https://doi.org/10.54113/j.sust.2021.000007","url":null,"abstract":"The need to satisfy high seismic performance of structures and to comply with the latest worldwide policies of environmental sustainability is leading engineers and researchers to higher interest in timber buildings. A post-tensioned timber frame specimen was tested at the structural laboratory of the University of Basilicata in Italy, in three different configurations: i) without dissipation (post-tensioning only-F configuration); ii) with dissipative angles (DF- dissipative rocking configuration) and iii) with dissipative bracing systems (BF - braced frame configuration). The shaking table tests were performed considering a set of spectra-compatible seismic inputs at different seismic intensities. This paper describes the experimental estimation of energy dissipated by multistorey post-tensioned timber prototype frame with different anti-seismic hysteretic dissipative devices used in the DF and BF testing configurations. The main experimental seismic key parameters have also been investigated in all testing configurations.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128899793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}