i形ECC/UHPC组合梁,配以钢筋和BFRP片材

Adam Guo
{"title":"i形ECC/UHPC组合梁,配以钢筋和BFRP片材","authors":"Adam Guo","doi":"10.54113/j.sust.2023.000022","DOIUrl":null,"url":null,"abstract":"This paper proposes a new type of small-sized I-shaped engineered cementitious composite (ECC)/ ultra-high performance concrete (UHPC) composite beam which has the potential to be suitable for corrosive environments. The lower tensile part of the beam was made of ECC material (2/3 of the height), and the top compressive part was made of UHPC material (1/3 of the height). Inner embedded steel bars and surface-bonded basalt fiber reinforced polymer (BFRP) sheets were adopted as the reinforcing materials in combination. A total of nine I-shaped beams were designed and tested under four-point bending test. The influence of parameters such as the ratio of the embedded tensile steel bars, the top UHPC flange, and the surface bonded tensile BFRP sheet on the behavior of the beams was investigated. The results showed that the I-shaped ECC/UHPC composite beams have excellent comprehensive performance, and thanks to the ultra-high durability of the component materials, they have ultra-high durability that ordinary I-steel beams do not have and thus have broad application prospects in corrosive environments. The shear resistance capacity of the thin-walled ECC web needs to be further improved, and UHPC is recommended for the web in the follow-up study.","PeriodicalId":138723,"journal":{"name":"Sustainable Structures","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"I-shaped ECC/UHPC composite beams reinforced with steel bars and BFRP sheets\",\"authors\":\"Adam Guo\",\"doi\":\"10.54113/j.sust.2023.000022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new type of small-sized I-shaped engineered cementitious composite (ECC)/ ultra-high performance concrete (UHPC) composite beam which has the potential to be suitable for corrosive environments. The lower tensile part of the beam was made of ECC material (2/3 of the height), and the top compressive part was made of UHPC material (1/3 of the height). Inner embedded steel bars and surface-bonded basalt fiber reinforced polymer (BFRP) sheets were adopted as the reinforcing materials in combination. A total of nine I-shaped beams were designed and tested under four-point bending test. The influence of parameters such as the ratio of the embedded tensile steel bars, the top UHPC flange, and the surface bonded tensile BFRP sheet on the behavior of the beams was investigated. The results showed that the I-shaped ECC/UHPC composite beams have excellent comprehensive performance, and thanks to the ultra-high durability of the component materials, they have ultra-high durability that ordinary I-steel beams do not have and thus have broad application prospects in corrosive environments. The shear resistance capacity of the thin-walled ECC web needs to be further improved, and UHPC is recommended for the web in the follow-up study.\",\"PeriodicalId\":138723,\"journal\":{\"name\":\"Sustainable Structures\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54113/j.sust.2023.000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54113/j.sust.2023.000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新型的小型工字工程胶凝复合材料(ECC)/超高性能混凝土(UHPC)组合梁,具有适用于腐蚀环境的潜力。梁下部受拉部分采用ECC材料(高度的2/3),上部抗压部分采用UHPC材料(高度的1/3)。采用内嵌钢筋和表面粘结的玄武岩纤维增强聚合物(BFRP)板作为组合增强材料。共设计了9根工字形梁,并进行了四点弯曲试验。研究了预埋抗拉钢筋比例、顶部UHPC法兰、表面粘结抗拉BFRP片材等参数对梁性能的影响。结果表明,工字钢ECC/UHPC组合梁综合性能优异,由于构件材料的超高耐久性,具有普通工字钢梁所不具备的超高耐久性,在腐蚀环境中具有广阔的应用前景。ECC薄壁腹板的抗剪能力有待进一步提高,在后续研究中推荐采用UHPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I-shaped ECC/UHPC composite beams reinforced with steel bars and BFRP sheets
This paper proposes a new type of small-sized I-shaped engineered cementitious composite (ECC)/ ultra-high performance concrete (UHPC) composite beam which has the potential to be suitable for corrosive environments. The lower tensile part of the beam was made of ECC material (2/3 of the height), and the top compressive part was made of UHPC material (1/3 of the height). Inner embedded steel bars and surface-bonded basalt fiber reinforced polymer (BFRP) sheets were adopted as the reinforcing materials in combination. A total of nine I-shaped beams were designed and tested under four-point bending test. The influence of parameters such as the ratio of the embedded tensile steel bars, the top UHPC flange, and the surface bonded tensile BFRP sheet on the behavior of the beams was investigated. The results showed that the I-shaped ECC/UHPC composite beams have excellent comprehensive performance, and thanks to the ultra-high durability of the component materials, they have ultra-high durability that ordinary I-steel beams do not have and thus have broad application prospects in corrosive environments. The shear resistance capacity of the thin-walled ECC web needs to be further improved, and UHPC is recommended for the web in the follow-up study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信