Yanwen Shao , Fenghua Zhao , Baruch Spiro , Dehui Li , Guangyuan Mu , Jiangman Chu , Jing Lu , Longyi Shao
{"title":"Net primary productivity of paleo-peatlands linked to deep-time glacial periods in the late Carboniferous and early Permian icehouse interval","authors":"Yanwen Shao , Fenghua Zhao , Baruch Spiro , Dehui Li , Guangyuan Mu , Jiangman Chu , Jing Lu , Longyi Shao","doi":"10.1016/j.coal.2024.104644","DOIUrl":"10.1016/j.coal.2024.104644","url":null,"abstract":"<div><div>Peatlands, an important organic carbon reservoir, play a crucial role in the global carbon cycle. The carbon accumulation of peatlands, reflected by net primary productivity (NPP), can have an impact on global carbon cycling and climate change. The late Carboniferous - early Permian is an icehouse period, during which numerous thick coal beds were accumulated in the North China Block (NCB) located within a low-latitude area, providing an opportunity for studying the carbon cycling under the glacial and interglacial climates. In this study, spectral analysis was performed on the natural gamma-ray (GR) logs of the Benxi, Taiyuan, and Shanxi formations of the late Carboniferous to early Permian in a borehole section located within the Ordos Basin in western NCB. Cyclic signals related to astronomical orbital parameters were identified, including long eccentricity (∼405 kyr), short eccentricity (∼125 kyr and ∼ 95 kyr), and obliquity (∼35.5 kyr). A floating astronomical time scale was established by using the long eccentricity signal, and this time scale was further used to constrain the durations of the accumulation of coal-forming paleo-peatlands. The paleo-peatland for the C<sub>8+9</sub> coal seam (9 m thick) of the Taiyuan Formation lasted approximately 203 kyr, and the paleo-peatland for the C5 coal seam (4 m thick) of the Shanxi Formation lasted approximately 46 kyr. Using this timeframe and an estimation of carbon loss during coalification, the carbon accumulation rates of the late Carboniferous - early Permian low-latitude peatlands are calculated to be 104.7 ± 14.9 g·<em>C</em>·m<sup>−2</sup>·a<sup>−1</sup>for the C<sub>8+9</sub> coal seam and 192.6 ± 11.6 g·<em>C</em>·m<sup>−2</sup>·a<sup>−1</sup>for the C<sub>5</sub> coal seam. The NPP of the paleo-peatlands, which deducts a part of the carbon loss caused by the loss of CO<sub>2</sub> and CH<sub>4</sub>, can be calculated from the carbon accumulation rates. The calculated average NPP of the paleo-peatlands for the C<sub>8+9</sub> seam was 199 ± 28 g·<em>C</em>·m<sup>−2</sup>·a<sup>−1</sup>, and that of the C<sub>5</sub> seam was 366 ± 22 g·<em>C</em>·m<sup>−2</sup>·a<sup>−1</sup>. In combination with the absolute time scale calibrated by high-precision U<img>Pb dates from Palougou section in western NCB, the depositional time of the investigated strata was constrained to be from 300.1 ± 0.5 Ma to 294.3 ± 0.5 Ma. The coal seams of the late Carboniferous to early Permian in the NCB correspond to an interglacial interval around ∼298 Ma. The peatland with a lower NPP corresponds to the warming stage and the peatland with a higher NPP corresponds to the cooling stage. This implies that a lower NPP of paleo-peatland tends to be less efficient in carbon storage, and could not reduce the atmospheric CO<sub>2</sub> substantially. In contrast, a higher NPP of paleo-peatland tends to accelerate carbon fixation, leading to temperature decrease and the termination of interglacial interval in ","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"296 ","pages":"Article 104644"},"PeriodicalIF":5.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anji Liu , Qingyong Luo , Arka Rudra , Niels Hemmingsen Schovsbo , Xiaowei Zheng , Zhiheng Zhou , Hamed Sanei
{"title":"Effects of thermal intrusion on biomarker distributions in the Alum Shale from south-central Sweden","authors":"Anji Liu , Qingyong Luo , Arka Rudra , Niels Hemmingsen Schovsbo , Xiaowei Zheng , Zhiheng Zhou , Hamed Sanei","doi":"10.1016/j.coal.2024.104643","DOIUrl":"10.1016/j.coal.2024.104643","url":null,"abstract":"<div><div>The middle (Miaolingian) to upper (Furongian) Cambrian Alum Shale Formation in the DBH15/73 core from south-central Sweden was exposed to local heat from a diabase intrusion, providing an opportunity to investigate the molecular geochemical response to thermal stress. Organic petrological observations and biomarker analyses were conducted to study changes in maturity-indicating parameters and the distribution of high molecular weight polycyclic aromatic hydrocarbons (PAHs) during the maturation process. The DBH15/73 samples exhibit a maturity gradient, ranging from immature at the base to mature in the upper part of the Alum Shale Formation. Multiple maturity-based biomarker parameters were analyzed, and Ts/(Ts + Tm), M<sub>30</sub>/(M<sub>30</sub> + H<sub>30</sub>), and Hopane H<sub>32</sub>: 22S/(22S + 22R) of saturated hydrocarbon parameters are found to be more reliable. Ratios of alkylnaphthalenes, alkylphenanthrenes, and alkyldibenzothiophenes (MNR, DNR, TMNr, TeMNr, MPI-1, MPR, MDR, and DMDR) also showed consistent correlations with thermal maturity. Thermal maturation impacted the macromolecular structure, resulting in the aromatization and demethylation, leading to MPy/Py, MChy/Chy, and the sum of unsubstituted 5-ring/4-ring PAH ratios changes with maturity. The influence of thermal maturation outweighs that of uranium radiation in this study, and maturity varies mainly with depth.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104643"},"PeriodicalIF":5.6,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disentangling causes of the limestone-marl bedding couplets in the Bridge Creek Limestone Member of the Greenhorn Formation through an integrated sedimentological and organic petrology analysis","authors":"Zhiyang Li , Maria Mastalerz","doi":"10.1016/j.coal.2024.104640","DOIUrl":"10.1016/j.coal.2024.104640","url":null,"abstract":"<div><div>Although limestone-marl bedding couplets in the Cenomanian-Turonian Bridge Creek Limestone (BCL) have been widely attributed to changes in environmental conditions ultimately driven by Earth's orbital cycles, the causes of short-term variations in organic matter (OM) enrichment and composition (i.e., types and proportions of different macerals) in the bedding couplets through the BCL have rarely been examined in detail. To fill this gap, this study examined the BCL through an integrated sedimentological and organic petrology analysis. With the well-developed depositional context, organic petrology analysis was conducted on 17 samples from seven limestone-marl bedding couplets consisting of different sedimentary facies types in the USGS #1 Portland Core to systematically examine differences in the maceral composition among different expressions of the limestone-marl bedding couplets. The BCL in the #1 Portland Core has overall low thermal maturity (∼0.60 % vitrinite reflectance). All BCL samples contain dominant marine OM including bituminite (dominantly micrinized), alginite, and liptodetrinite and minor but persistently present terrigenous OM including vitrinite and inertinite. The OM composition and characteristics, combined with sedimentary facies characteristics and TOC data, suggest that the OM enrichment and preservation through the BCL is subject to various processes such as bottom current reworking and burial, bioturbation, early diagenesis, and pulses of volcanic ash input. The interplay of these processes led to changes in sedimentation rate, which can be associated with short-term relative changes in sea level and episodic volcanic input. Direct examinations of the composition and texture of OM in fine-grained sedimentary rocks can provide valuable insights into the causes of short-term variations in depositional conditions on a process basis, which should be integrated with other datasets (e.g., sedimentology, geochemistry) to fully resolve the specific mechanism(s) that modulated sedimentation in similar fine-grained marine systems characterized by apparently cyclic lithological alternations.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104640"},"PeriodicalIF":5.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tungsten (W) geochemistry in north Asian coals (Siberia, Russian far east and Kazakhstan)","authors":"S.I. Arbuzov , I.Yu. Chekryzhov , V.I. Vyalov , D.A. Spears , A.S. Kholodov , N.Yu. Popov","doi":"10.1016/j.coal.2024.104639","DOIUrl":"10.1016/j.coal.2024.104639","url":null,"abstract":"<div><div>This research discusses new data on the geochemistry of tungsten (W) in the coals of North Asia (Siberia, the Russian Far East, and Kazakhstan), based on analyses of over two thousand samples. In general, the studied coals are enriched in W in comparison with the average value for coals all over the world. In different regions of the studied area, coal deposits with anomalous W concentrations (up to commercially important concentrations) were found and the factors controlling the W content in these coals were investigated. Samples were selected in order to study both the vertical variation in W through the seams and laterally to determine its distribution across the coal basins. Seams with average W concentrations generally show some enrichment at the margins of the seam (Zilbermints law). In anomalously enriched seams, however, several patterns of W distribution are observed. Most commonly the base of the seam is enriched and concentrations decrease upwards, less commonly the reverse is the case and rarely the central parts of the seam are enriched. The results from the present work demonstrate that W is predominantly organically associated. In lignites, more than 80 % is concentrated in humic substances with the remainder in mineral matter. However, as the organic matter transforms during coalification some of the W passes into solution leading both to the formation of authigenic minerals and also loss from the seam. The nature of the W distributions in the coal seams indicates a predominantly hydrogenous (aqueous) mechanism of transport and accumulation. It is concluded that the composition of the rock types surrounding the coal-forming basins and the hydrogeochemical conditions of these basins and deposits are critical factors in determining the levels of W accumulation in the coals. The elevated and anomalous tungsten concentrations in coal and peat described in this work are due to the leaching of tungsten rich rocks, primarily granitoids and tungsten-bearing greisens and skarns.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104639"},"PeriodicalIF":5.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujie Yuan , Songtao Wu , Emad A. Al-Khdheeawi , Jingqiang Tan , Zhuo Feng , Zhenjiang You , Reza Rezaee , Han Jiang , Jun Wang , Stefan Iglauer
{"title":"Substantial gas enrichment in shales influenced by volcanism during the Ordovician–Silurian transition","authors":"Yujie Yuan , Songtao Wu , Emad A. Al-Khdheeawi , Jingqiang Tan , Zhuo Feng , Zhenjiang You , Reza Rezaee , Han Jiang , Jun Wang , Stefan Iglauer","doi":"10.1016/j.coal.2024.104638","DOIUrl":"10.1016/j.coal.2024.104638","url":null,"abstract":"<div><div>The substantial gas enrichment in shales of the Ordovician–Silurian transition is associated with the development of the organic matter (OM)-rich source rock. While organic matter enrichment has been linked to intensive volcanism, it remains a challenge to precisely evaluate the impact of the volcanism on substantial gas enrichment containing the largest gas storage capacity. This study focused on consecutive borehole shale samples from the Wufeng–Longmaxi formations during the Ordovician–Silurian transition in southern China. We conducted a comprehensive analysis, integrating the major geological volcanism with high-resolution analysis, including QEMSCAN, argon-ion SEM, thin-section examination, XRD mineralogy, TOC, Hg concentration, petrophysical properties and nanopore structure analysis (low-pressure CO<sub>2</sub>/N<sub>2</sub> gas adsorption, helium porosity and permeability). The results link the significant shale gas enrichment in Wufeng–Longmaxi formations to intensive volcanism across the Ordovician–Silurian transition. We identified the most favorable shale intervals in the lower Longmaxi Formation, aligning with the peak period of volcanism. This period showed synchronous spikes in Hg, Hg/TOC, and TOC contents. Shale deposited during this favorable paleoenvironment exhibited the highest values of TOC, porosity, permeability, specific surface area, pore volume, and maximum gas adsorption capacity, leading to the largest amount of gas content and substantial gas enrichment. Our work, therefore, provides new insights into identifying the most favorable shale gas resources. This knowledge assists in accurate predictions of the stratigraphic ‘sweet spot’ intervals for large shale gas storage capacity, providing crucial information for engineering explorations and developments in shale formations.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104638"},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu Wang , Bo Liu , Longhui Bai , Lin Ma , Zhichao Yu , Qiuli Huo , Kevin G. Taylor
{"title":"Differential mineral diagenetic evolution of lacustrine shale: Implications for CO2 storage","authors":"Liu Wang , Bo Liu , Longhui Bai , Lin Ma , Zhichao Yu , Qiuli Huo , Kevin G. Taylor","doi":"10.1016/j.coal.2024.104629","DOIUrl":"10.1016/j.coal.2024.104629","url":null,"abstract":"<div><div>Understanding the differential diagenetic evolution of different lithofacies is essential for assessing the spatial development of shale reservoirs. These insights are crucial in predicting sealing integrity and storage capacity for sequestered CO<sub>2</sub>. In this study, we examined seven wells from the Cretaceous Qingshankou Formation in the Songliao Basin, China, with vitrinite reflectance (<em>R</em><sub><em>o</em></sub>) values ranging from 0.60 % to 1.62 %. Thin section-based petrographic observations, coupled with QEMSCAN analysis, were used to classify the different lithofacies. X-ray diffraction (XRD) analysis of clay minerals, field emission scanning electron microscope (FE-SEM), and energy-dispersive spectrum (EDS) analyses were employed to analyze the mineral textures, pore types, and diagenetic pathways. The results showed that early diagenetic mineral phases include calcite cement (1st phase), framboidal and microcrystalline pyrite, ferroan and non-ferroan dolomite. Intermediate diagenetic mineral phases were marked by illitization of smectite, chlorite formed by chloritization of smectite and alteration of K-feldspar, and the formation of authigenic albite and quartz, calcite cement (2nd phase) and ankerite. Given the higher potential reaction rate of CO<sub>2</sub>-fluid‑carbonate systems, we propose that the lithofacies dominated by carbonate minerals are not effective for CO<sub>2</sub> storage, even in short-term. In contrast, lithofacies rich in feldspar and clay minerals are likely to be more effective for long-term CO<sub>2</sub> storage.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104629"},"PeriodicalIF":5.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Petrographic and geochemical signatures of the Upper Permian Gondwana coals: Newcastle Coal Measures, Northern Sydney Basin, Australia","authors":"Angelos G. Maravelis , Konstantinos Perleros , Evangelia Papandropoulou , Elina Chamilaki , Nikos Pasadakis , Stavros Kalaitzidis , Avraam Zelilidis","doi":"10.1016/j.coal.2024.104628","DOIUrl":"10.1016/j.coal.2024.104628","url":null,"abstract":"<div><div>This research presents an integrated approach to organic petrographical and geochemical characteristics of the Upper Permian Newcastle Coal Measures outcropping in the northern Sydney Basin, southeast Australia. Twenty-seven coal, coaly mudstone and mudstone samples were collected and analyzed by using organic petrography (maceral composition and vitrinite reflectance) techniques, Rock–Eval pyrolysis, bitumen extraction and gas chromatography - mass spectrometry (GC–MS). The obtained results indicate that the samples exhibit promising gas-prone source rock potential and contain a predominantly terrestrial in origin organic matter, with limited contribution by marine organisms. The prevalence of terrestrial organic matter is inferred by the presence of collotelinite and sporinite macerals in most of the samples and the ternary plot of C<sub>27</sub>, C<sub>28</sub> and C<sub>29</sub> regular steranes. Further, the low C<sub>27</sub>/C<sub>29</sub> ratio, the cross-plots of C<sub>27</sub>/(C<sub>27</sub> + C<sub>29</sub>) regular steranes vs. Pr/Ph ratio, the C<sub>27</sub>/C<sub>29</sub> vs. Pr/Ph and the C<sub>24</sub> tetracyclic/C<sub>26</sub> tricyclic terpane ratio point also to the terrestrial origin of the organic matter. The obtained values of vitrinite reflectance, T<sub>max</sub>, OEP<sub>27–31</sub> and CPI<sub>25–33</sub>, along the cross plots of 20S/(20S + 20R) versus ββ/(ββ + αα) suggest that the samples are immature and were subjected to a low burial depth. The examined samples indicate accumulation in a delta-plain environment of deposition, under fluctuating oxic/anoxic conditions, in a humid climatic zone that is characterized by dry periods, interrupting the longer-termed humid climatic regime. This research adds knowledge on the source rock potential in the northern Sydney Basin and on the environmental and climatic setting of a time interval just prior to the major Permian - Triassic climatic crisis.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104628"},"PeriodicalIF":5.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Sebastian Gomez-Neita , Ana Maria Pimentel Mizusaki , Taís Freitas da Silva , Sandra Rocio Manosalva-Sánchez , Jorge Eliecer Mariño-Martínez
{"title":"Paleoenvironmental reconstruction of coal deposition during the Cretaceous-Paleogene transition in the Eastern Cordillera Basin, Colombian Andes","authors":"Juan Sebastian Gomez-Neita , Ana Maria Pimentel Mizusaki , Taís Freitas da Silva , Sandra Rocio Manosalva-Sánchez , Jorge Eliecer Mariño-Martínez","doi":"10.1016/j.coal.2024.104626","DOIUrl":"10.1016/j.coal.2024.104626","url":null,"abstract":"<div><div>Stratal stacking patterns and factors influencing peat accumulation in coastal and continental settings represent a significant problem in studying coal-bearing sequences. To address this issue, this work focused on the Cretaceous-Paleogene Guaduas Formation on the Checua-Lenguazaque Syncline (CLS) coalfield in the Eastern Cordillera Basin (Colombian Andes). This study relies on geological survey, facies analysis, sequence stratigraphy, organic geochemistry, and coal petrography. Through these methods, depositional systems and sequences were characterized, and their relationship with coal composition was established. Sedimentary facies were categorized into four Facies Associations (FAs): lagoon, tidal flat, delta plain, and mixed fluvial system. Five T-R sequences (S1 to S5, in ascending order) were identified. S1 consists of lagoon and tidal sandstone, mudstone, and coal. S2-S4 comprise tidal, deltaic, and fluvial deposits. S5 is composed mainly of deltaic and fluvial facies. Thick coal seams (> 0.7 m) were concentrated in the regressive system tracts of S1 and S3, while the transgressive coals were deposited in S2-S3 and are associated with tidal environments. The organic petrography showed enrichment in vitrinite (30.00–85.20 %), while liptinite (0.00–16.60 %) and inertinite (4.60–34.40 %) varied according to depth and paleoenvironments. CLS coalfield displays an environmental evolution from shallow marine and lagoon deposits to deltaic and fluvial environments. Minor sea-level fluctuations, changes in accommodation, siliciclastic influx, and plant community distinguish this sedimentary succession. The deposition of the Guaduas Formation is characterized by a prograding pattern with dominant shallowing-upward cycles in a high accommodation setting. The organic matter accumulated under limno-telmatic to telmatic conditions in mesotrophic to ombrotrophic environments with nutrients derived mainly from rainfall. The paleoclimate for the Guaduas Formation indicates wet and hot conditions for flora expansion. This investigation determined paleoenvironments of the Maastrichtian-Paleocene coastal to fluvial successions within the tropical latitudes, indicating a strong relationship between depositional systems, sequence stratigraphy, paleoclimate, and coal composition.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104626"},"PeriodicalIF":5.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Özgen Karacan , Robert A. Field , Maria Olczak , Malgorzata Kasprzak , Felicia A. Ruiz , Stefan Schwietzke
{"title":"Mitigating climate change by abating coal mine methane: A critical review of status and opportunities","authors":"C. Özgen Karacan , Robert A. Field , Maria Olczak , Malgorzata Kasprzak , Felicia A. Ruiz , Stefan Schwietzke","doi":"10.1016/j.coal.2024.104623","DOIUrl":"10.1016/j.coal.2024.104623","url":null,"abstract":"<div><div>Methane has a short atmospheric lifetime compared to carbon dioxide (CO<sub>2</sub>), ∼decade versus ∼centuries, but it has a much higher global warming potential (GWP), highlighting how reducing methane emissions can slow the rate of climate change. When considering the contribution of greenhouse gas (GHG) emissions to current global warming (2010–2019) relative to the industrial revolution (1850–1900) levels, methane contributes 0.5 °C or ∼ a third of the total. The most recent post-2023 global estimates of methane emissions by bottom-up (BU) and top-down (TD) approaches for the coal mining sector are in the range of ∼41 ± 3 Tg yr<sup>−1</sup> and 33 ± 5 Tg yr<sup>−1</sup>, respectively. This divergence, notwithstanding overlapping confidence intervals, is a result of differences between applied TD global inversion models and BU emission inventories. Further research can help to better refine emissions from the various contributing coal mine methane (CMM) emissions sources. The coal mining sector accounts for over 10 % of global anthropogenic methane emissions. The contribution of CMM emissions to the global budget have increased since 2000, although upward and downward regional trends have been observed.</div><div>The Global Methane Pledge (GMP), which was signed by more than 150 nations, aims to reduce methane emissions by 30 % from 2020 levels by 2030. This could eliminate 0.2 °C of warming by 2050. The success or failure to reach the emission reduction targets of the GMP will depend on engagement with different sectors of the economy. In that regard, the coal sector could play a significant role for mitigating emissions and reaching emission reduction targets. The International Energy Agency (IEA) and United States Environmental Protection Agency (U.S. EPA) both estimate that over half of global methane emissions from coal operations could be avoided with the application of existing technologies. However, setting up emission reduction scenario targets for the coal mining sector poses significant challenges, which require clear understanding of the magnitude and behavior of CMM emission sources. Notwithstanding regional differences, with improved reporting and data transparency, emission control potential can be more accurately defined, which can inform effective and defensible policy approaches.</div><div>This paper highlights the climate forcing role of methane in the atmosphere and presents a detailed review of CMM emission sources along the coal lifecycle, traditional and new inventory practices applied in different countries, the status of estimating CMM emissions, and opportunities and difficulties associated with mitigating emissions from different CMM sources. Different policy approaches utilizing regulatory and economic mechanisms are explored and concluding remarks for importance and tools of CMM emission mitigation are provided. Ultimately, this paper aims to inform global CMM mitigation and emission reduction scenario t","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104623"},"PeriodicalIF":5.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henrik I. Petersen , Kasper H. Blinkenberg , Kresten Anderskouv , Arka Rudra , Xiaowei Zheng , Hamed Sanei
{"title":"Spatial distribution of remaining movable and non-movable oil fractions in a depleted Maastrichtian chalk reservoir, Danish North Sea: Implications for CO2 storage","authors":"Henrik I. Petersen , Kasper H. Blinkenberg , Kresten Anderskouv , Arka Rudra , Xiaowei Zheng , Hamed Sanei","doi":"10.1016/j.coal.2024.104624","DOIUrl":"10.1016/j.coal.2024.104624","url":null,"abstract":"<div><div>Depleted oil and gas fields constitute potentially important storage sites for CO<sub>2</sub> in the subsurface, but large-scale injection of supercritical (sc) CO<sub>2</sub> in chalk has not yet been attempted. One of the risks is the adverse effect of the substantial amount of remaining oil in the chalk reservoirs on scCO<sub>2</sub> injection. In order to counter an undesired effect on injectivity, a fundamental understanding of the spatial distribution and quantity of the movable, semi-movable, and non-movable oil, and solid bitumen/asphaltenes fractions of the remaining oil is critical. In this study a combination of organic geochemistry (gas chromatography of the saturated fraction and programmed pyrolysis), and reflected light microscopy was applied to evaluate and measure the spatial distribution, volume, and saturation of different oil fractions in a well-defined reservoir interval of a waterflooded Maastrichtian chalk reservoir in the Danish Central Graben, North Sea. A total of 127 samples from a slightly deviated vertical well and two ∼5 km-long horizontal wells from the Halfdan and Dan fields were analyzed. An original uneven distribution of oil saturation and composition or different production efficiency of different levels in the reservoir may account for variations in the total oil and oil fraction saturations. Gas chromatography shows that the solvent extractable oil is quite similar in composition, characterized by a dominance of polar compounds and a high content of asphaltenes. Extended slow heating (ESH) pyrolysis reveals that most of the remaining oil saturation consists of semi-movable oil and total non-movable oil (non-movable oil plus solid bitumen/asphaltenes). Reduced oil gravity values (API) are related to evaporation loss of the lightest hydrocarbon fraction during core storage and increase of the relative proportion of the heavier oil fractions by waterflooding during production. Microscopy disclosed three forms of oil: i) Patchy distributed lighter, movable oil showing a bluish fluorescence, ii) Brownish staining with a dark orange to brownish fluorescence, and iii) Dark brown non-fluorescing oil and black solid bitumen/asphaltenes occurring in microfossils and along deformation bands and stylolites, constituting the heavy non-movable oil fractions. There is a general correlation between bulk rock porosity and the total non-movable oil saturation. It thus appears that the heavy non-movable oil fractions preferentially occur in association with low-permeability heterogeneities within high-permeability stratigraphic intervals. These intervals appear to favor accumulation of non-movable oil and solid bitumen/asphaltenes and may carry a higher risk for impeding scCO<sub>2</sub> flow.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"295 ","pages":"Article 104624"},"PeriodicalIF":5.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}