{"title":"Exploring freeze-thaw damage distribution of asphalt mixture through DIC in combination with CT","authors":"Hengzhen Li, Hao Shi, Huining Xu, Yu Tian, Yiqiu Tan, Kaidi Liu","doi":"10.1177/10567895241245750","DOIUrl":"https://doi.org/10.1177/10567895241245750","url":null,"abstract":"Open graded friction course (OGFC) is highly susceptible to environmental impacts such as load and clogging, due to its rich void structure and exposure to environments. Especially in cold regions, freeze–thaw (F-T) damage is inevitable for OGFC. While the existing analysis methods cannot specifically describe the material's micro-response to load or environment. Therefore, the digital image correlation (DIC) in combination with computed tomography (CT) was applied to closely examine the intricate process of F-T damage of OGFC in this research. Principal strain and strain energy were used to describe the F-T damage process and distribution. In addition, the effects of initial void content and immersion conditions on the temporal and spatial distribution of damage were discussed. The data demonstrated that the spatial distribution of F-T damage strain was uneven. During F-T cycles, the principal strain inside the OGFC during F-T cycles was generally increased, and the deformation of the sample gradually accumulated. According to the strain energy growth rate variation, the F-T damage could be divided into two stages during the 18 F-T cycles, namely, the development stage and the deceleration stage. Moreover, the crucial parts of F-T damage were determined to be at the end of the voids connected with the outside or the void interface between the aggregates and asphalt mortar. The larger initial void content would increase the strain of OGFC during F-T cycles, as well as the inhomogeneity of the strain. Furthermore, the strain energy increased considerably, and the development of F-T damage of OGFC accelerated. Under partial immersion conditions, the immersed part has large strain and strain energy due to the direct effect of F-T, and the increase in immersion depth aggravates the F-T damage.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"13 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessio Rubino, Federico Accornero, Alberto Carpinteri
{"title":"Fracture mechanics approach to minimum reinforcement design of fibre-reinforced and hybrid-reinforced concrete beams","authors":"Alessio Rubino, Federico Accornero, Alberto Carpinteri","doi":"10.1177/10567895241245865","DOIUrl":"https://doi.org/10.1177/10567895241245865","url":null,"abstract":"The problem of the minimum reinforcement condition in fibre-reinforced and hybrid-reinforced concrete flexural elements is addressed in the framework of fracture mechanics by means of the Updated Bridged Crack Model (UBCM). The model describes the crack propagation process occurring in the critical cross-section of the reinforced member, by assuming the composite as a multiphase material, whereby the toughening contribution of the cementitious matrix and of the reinforcements are independently evaluated. The key-point of the discussion is that, when the influence of the matrix nonlinearities on the response is neglected, the minimum reinforcement condition is defined by a linear relationship between the critical values of two dimensionless numbers: (i) the bar- reinforcement brittleness number, N<jats:sub>P</jats:sub> , proportional to the steel-bar area percentage, ρ; (ii) the fibre- reinforcement brittleness number, N<jats:sub>P,f</jats:sub>, proportional to the fibre volume fraction, V<jats:sub>f</jats:sub>. The model is applied to several experimental campaigns of the literature, in order to assess its suitability in the minimum reinforcement design of reinforced members in a unified fracture mechanics-based framework.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"9 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavior of geometrically-similar Basalt FRP bars-reinforced concrete beams under dynamic torsional loads","authors":"Yushuang Lei, Liu Jin, Wenxuan Yu, Xiuli Du","doi":"10.1177/10567895241245860","DOIUrl":"https://doi.org/10.1177/10567895241245860","url":null,"abstract":"A numerical model utilizing 3D mesoscale simulation methods was developed to investigate the influence of strain rate on the torsional performance of geometrically similar Basalt Fiber Reinforced Polymer bars-reinforced concrete (BFRP-RC) beams, as well as the corresponding size effects. The model incorporates concrete heterogeneity, material strain rate effects, and the dynamic bond-slip relationship between BFRP bars and concrete. The torsional performance of BFRP-RC beams with different structural sizes and stirrup ratios was analyzed under different strain rates. The study yielded the following findings: (1) The damage degree of BFRP-RC beams increases with the rising strain rate. (2) Increasing strain rate and stirrup ratio enhances the beams’ torsional strength and ductility while attenuating the size effect, albeit not eliminating it. (3) The impact of increasing strain rate on beam strength, ductility, and size effect outweighs that of increasing stirrup ratio. Finally, based on the Bažant size effect law (SEL) combined with the simulation results, a new size effect law was proposed that can quantitatively consider the effect of strain rate and stirrup ratio on the torsional strength of BFRP-RC beams.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"235 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wojciech Macek, Ricardo Branco, Joel de Jesus, José Domingos Costa, Shun-Peng Zhu, Reza Masoudi Nejad, Andrew Gryguć
{"title":"Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel","authors":"Wojciech Macek, Ricardo Branco, Joel de Jesus, José Domingos Costa, Shun-Peng Zhu, Reza Masoudi Nejad, Andrew Gryguć","doi":"10.1177/10567895241245879","DOIUrl":"https://doi.org/10.1177/10567895241245879","url":null,"abstract":"In this study, the connection between total strain energy density and fracture surface topography is investigated in additively manufactured maraging steel exposed to low-cycle fatigue loading. The specimens were fabricated using laser beam powder bed fusion (LB-PBF) and examined under fully-reversed strain-controlled setup at strain amplitudes scale from 0.3% to 1.0%. The post-mortem fracture surfaces were explored using a non-contact 3D surface topography measuring system and the entire fracture surface method. The focus is on the relationship between fatigue characteristics, expressed by the total strain energy density, and the fracture surface topography features, represented by areal, volume, and fractal dimension factors. A fatigue life prediction model based on total strain energy density and fracture surface topography parameters is proposed. The presented model shows good accordance with fatigue test results and outperforms other existing models based on the strain energy density. This model can be useful for post-failure analysis of engineering elements under low-cycle fatigue, especially for materials produced by additive manufacturing (AM).","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"7 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the acoustic emission technique using fuzzy artificial bee colony-based deep learning for characterizing selective laser melted AlSi10Mg specimens","authors":"Claudia Barile, Caterina Casavola, Dany Katamba Mpoyi, Giovanni Pappalettera, Vimalathithan Paramsamy Kannan","doi":"10.1177/10567895241247325","DOIUrl":"https://doi.org/10.1177/10567895241247325","url":null,"abstract":"This article presents a classification of Acoustic Emission (AE) signals from AlSi10Mg specimens produced via Selective Laser Melting (SLM). Tensile tests characterized the mechanical properties of specimens printed in different orientations (X, Y, Z, 45°). Initially, a study quantified damage modes based on the stress-strain curve and cumulative AE energy. AE signals for each specimen (X, Y, 45°, Z), across deformation stages (elastic and plastic), and damage modes were analyzed using continuous wavelet transform to extract time-frequency features. A novel convolutional neural network, based on artificial bee colonies and fuzzy C-means, was developed for scalogram classification. Data augmentation with Gaussian white noise enhanced the approach. Cross-validation ensured robustness against overfitting and suboptimal local maxima. Evaluation metrics, including the confusion matrix, precision-recall curve, and F1 score, demonstrated the algorithm's high accuracy of 92.6%, precision-recall curve of 92.5%, and F1 score of 92.5% for AE signals based on printing direction (X, Y, 45°, Z). The study highlighted the potential for improving AE signal classification related to elastic and plastic deformation stages with 100% accuracy. For damage modes, the algorithm achieved a confusion matrix accuracy of 90.6%, a precision-recall curve of 90.4%, and an F1 score of 90.5%. This approach demonstrates high accuracy in classifying AE signals across different printing orientations, deformation stages, and damage modes of AlSi10Mg specimens manufactured through SLM.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"10 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of viscoelastic deformation and rate-dependent fracture damage in rat bone","authors":"Santosh Reddy Kommidi, Yong-Rak Kim, Do-Gyoon Kim","doi":"10.1177/10567895241245716","DOIUrl":"https://doi.org/10.1177/10567895241245716","url":null,"abstract":"Bone is a complex hierarchical structural material whose organ-level response is highly influenced by its constitutive behavior at the microstructural level, which can dictate the inelastic nonlinear deformation and fracture within the organ. In the current study, a combined experimental-computational approach was sought to first obtain the local constitutive properties. Later, a multiscale modeling framework utilizing a novel rate-dependent nonlinear viscoelastic cohesive zone (NVCZ) model was used to explore the fracture behavior at the microstructure of the bone and its influence on the global scale (organ-level) response. Toward this end, nanoindentation testing was conducted within the cross-section of a rat femur bone specimen. An inverse optimization process was used to identify the isotropic linear viscoelastic (LVE) properties of cortical bone by integrating the test results with a finite element model simulation of the nanoindentation testing. Model results using different numbers of spring-dashpot units in the generalized Maxwell model showed that four spring-dashpot units are sufficient to capture the LVE behavior, while solely LVE constitutive relation is limited to fully characterize the rat femur. The LVE constitutive properties were then used along with the rate-dependent NVCZ fracture within the representative volume element (RVE), which was two-way coupled to the global scale bone. A parametric study was conducted by varying the fracture properties of the NVCZ model. The model demonstrated the capability and features to represent inelastic deformation and nonlinear fracture that are linked between length scales. This further implies that the inelastic fracture model and the two-way coupled modeling can elucidate the complex multiscale deformation and fracture of bone, while model validation and further advancements with test results remain a follow-up study and are currently in progress.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"33 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir Dunić, Ryosuke Matsui, Kohei Takeda, Miroslav Živković
{"title":"Phase-field damage simulation of subloop loading in TiNi SMA","authors":"Vladimir Dunić, Ryosuke Matsui, Kohei Takeda, Miroslav Živković","doi":"10.1177/10567895241245859","DOIUrl":"https://doi.org/10.1177/10567895241245859","url":null,"abstract":"In practical applications, TiNi shape memory alloys (SMAs) exhibit behavior that can pose a challenge with current constitutive models and their implementations in finite element method (FEM) software. TiNi SMA devices typically operate in the forward or reverse martensitic transformation regime, which is known as subloop loading. During such cyclic loading–unloading, the hysteresis stress–strain loop changes because of material damage, which can be considered the fatigue of TiNi SMAs. During both the loading and unloading processes, the stress plateau decreases. At the same time, the accumulated (residual) martensitic transformation strain increases. In this study, the experimental investigation results and observations of the aforementioned phenomena are presented. Next, the phase-field damage model is employed, along with a modified Lagoudas constitutive model, to simulate the change in stress–strain hysteresis. Furthermore, a fatigue function is used to simulate the accumulation of martensitic transformation strain. The experimental stress–strain response is compared with the simulation results, and good quantitative and qualitative agreement is obtained. The damage and martensitic volume fraction with respect to strain are discussed for full-loop and subloop loading. The observations and conclusions, as well as open questions, are presented. Possible directions for future research are provided.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"58 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Can Du, Jing Bi, Yu Zhao, Chaolin Wang, Wei Tang, Shuailong Lian
{"title":"Investigation of pore structure evolution and damage characteristics of high temperature rocks subjected to liquid nitrogen cooling shock","authors":"Can Du, Jing Bi, Yu Zhao, Chaolin Wang, Wei Tang, Shuailong Lian","doi":"10.1177/10567895241247324","DOIUrl":"https://doi.org/10.1177/10567895241247324","url":null,"abstract":"Liquid nitrogen (LN<jats:sub>2</jats:sub>) can be utilized in the development of enhanced geothermal systems, as well as for deep/ultra-deep hydrocarbon reservoir stimulation, fire suppression, and other high-temperature geological projects. It is a crucial issue in the utilization of LN<jats:sub>2</jats:sub> to investigate the pore structure evolution, permeability, and damage characteristics of high-temperature rocks under the influence of LN<jats:sub>2</jats:sub> cooling shock. These rocks were first slowly heated to 150∼600°C and held for 2 h, followed by LN<jats:sub>2</jats:sub> or natural cooling. The evolution of pore volume in high-temperature rocks affected by liquid nitrogen cooling was quantified. T<jats:sub>2</jats:sub> cutoff values were determined through centrifugal tests, while the contents of irreducible and mobile fluids were estimated. Based on the aforementioned analysis as well as changes in irreducible fluid saturation, pore throat, tortuosity, and permeability, this study examines the closure and development of pores along with permeability behavior. The findings suggest that, despite a more pronounced decrease in porosity at lower heating temperatures, LN<jats:sub>2</jats:sub> cooling specimens exhibit superior pore connectivity and permeability compared to those cooled naturally. LN<jats:sub>2</jats:sub> stimulation not only induces crack initiation and propagation but also results in further cooling induced densification based on heating densification. 225°C is considered to be the optimal temperature for cooling contraction induced densification in this study. At higher heating temperatures, the damage to rock cooled with LN<jats:sub>2</jats:sub> is more severe than that of naturally cooled. This results in a greater increase in porosity, movable fluid content and proportion, and permeability of LN<jats:sub>2</jats:sub> cooled specimens compared to naturally cooled specimens. The damage mechanism can be better understood by the constructed damage model that coordinates the pore increase/decrease and mutual pore transformation from the perspective of pore evolution.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"64 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansion displacement mechanics model of concrete under seawater corrosion","authors":"Tingwei Chen, Jinhan Chen, Jiankang Chen, Yunfeng Lv","doi":"10.1177/10567895241245877","DOIUrl":"https://doi.org/10.1177/10567895241245877","url":null,"abstract":"In this study, the variation in the expansion displacement of concrete samples with different water-cement ratios under five corrosion solutions (single sulfate salt and coupled sulfate-chloride salt) is explored. The expansion displacement evolution of these concrete samples under sulfate corrosion (single salt corrosion) and sulfate-chloride corrosion (double salt corrosion) is comprehensively examined. The results reveal that the continuous accumulation of corrosion damage eventually manifests in the form of expansion displacement. Based on the experimental results and the chemical reaction rate equation of the delayed ettringite formation and Friedel’s salt generation, an evolution model of expansion force is established. According to this model and the Weibull distribution law of damage, a expansion displacement mechanics model is proposed to predict the expansion displacement behavior of concrete under sulfate corrosion as well as combined sulfate-chloride corrosion.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"58 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multiscale micromechanical progressive elastic-damage model for cementitious composites featuring superabsorbent polymer (SAP)","authors":"Aiqing Xu, Xiaoyan Man, J Woody Ju","doi":"10.1177/10567895241247996","DOIUrl":"https://doi.org/10.1177/10567895241247996","url":null,"abstract":"A multiscale micromechanics-based progressive damage model is developed to investigate the overall mechanical behavior and the interfacial microcrack evolutions of the cementitious composites featuring superabsorbent polymer (SAP) under uniaxial tension. Elastic properties, progressive damage process, and homogenization procedure of cementitious composites are systematically integrated in this model. The effective elastic moduli of the composites are determined based on a multiscale micromechanical framework. According to the small strain assumption, the total strain tensor and the elastic-damage compliance tensor are additively decomposed into elastic and damage-induced components. The damage-induced strains and compliances are then deduced from micromechanics. To characterize the progressive elastic-damage induced by microcracks, stages of microcrack propagation are identified from the interface contact stress and the matrix cleavage stress. The complex potentials and stress intensity factors for kinked interface cracks are derived from the distributed dislocations method. By implementing the homogenization process, the macroscopic mechanical behavior is obtained from the micro/mesoscale. The results indicate that the material parameters have clear mechanical significance. Different parameters, such as the SAP addition ratio, aggregate content, initial interfacial crack size, and initial interfacial crack location, are revealed to be influential in the overall mechanical behavior of the composites. The proposed model can be generalized to other particle-reinforced composites with different constituent properties, which can potentially contribute to the design and optimization of durable composites.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"39 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}