International Journal of Damage Mechanics最新文献

筛选
英文 中文
Blast response and damage assessment of reinforced concrete slabs using convolutional neural networks 基于卷积神经网络的钢筋混凝土板爆炸响应与损伤评估
2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-10-26 DOI: 10.1177/10567895231204640
Bilal Ahmed, Taehyo Park, Jong-Su Jeon
{"title":"Blast response and damage assessment of reinforced concrete slabs using convolutional neural networks","authors":"Bilal Ahmed, Taehyo Park, Jong-Su Jeon","doi":"10.1177/10567895231204640","DOIUrl":"https://doi.org/10.1177/10567895231204640","url":null,"abstract":"Concrete structures are essential for shelters, storage, transportation, and defense systems. However, they are vulnerable to terrorist attacks and explosions. The most exposed component of these structures is the reinforced concrete slab, which is also the primary force-transferring member. Therefore, the present study utilizes machine learning techniques to predict the maximum vertical displacement of reinforced concrete slabs subjected to air-blast loading. This can be achieved using 11 input parameters of the slab and TNT blast to predict the maximum displacement. The dataset comprises 146 samples from various experimental and numerical blast studies on reinforced concrete slabs in the open literature. Rather than presenting the data in a tabular format, each individual data sample is transformed into an image using distinct techniques: one uses a self-similarity matrix, and the other utilizes an image generator for the tabular data. Image generation transforms tabular data into images by assigning features to pixel positions. This results in spatial dependency of the input features. Using these images, various convolutional neural networks were adopted (ResNet-18, ResNet-50, ResNet-101, EfficentNet-b0, ShuffleNet, Xception, DarkNet-53, and DenseNet-20) and trained to predict the slab maximum displacement. Most models demonstrated promising results. The performance of the models was predicted based on the root mean squared error, mean absolute error, and coefficient of determination, and the impact of input features on the maximum displacement was examined. Along with this, the initial study of the blast damage assessment on reinforced concrete slabs is explained for future work to be performed based on the proposed method.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel meso-damage constitutive model of rock under true triaxial stress with three-dimensional cracking strength, threshold and closure effect 考虑三维开裂强度、阈值和闭合效应的真三轴应力下岩石细观损伤本构模型
2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-10-17 DOI: 10.1177/10567895231204631
Zhi Zheng, Jiaju Zhou, Junhong Li, Honghui Tao, Xiaofeng Han, Hongyu Xu, Qiang Zhang
{"title":"A novel meso-damage constitutive model of rock under true triaxial stress with three-dimensional cracking strength, threshold and closure effect","authors":"Zhi Zheng, Jiaju Zhou, Junhong Li, Honghui Tao, Xiaofeng Han, Hongyu Xu, Qiang Zhang","doi":"10.1177/10567895231204631","DOIUrl":"https://doi.org/10.1177/10567895231204631","url":null,"abstract":"Deep underground engineering is in a true three-dimensional stress state, and the adjustment of the three-dimensional stress state caused by engineering excavation will induce the fracture or even instability of the surrounding rock. However, three-dimensional mechanical model research suitable for the stability analysis of deep surrounding rock is very scarce. Therefore, a series of tests under different true triaxial stresses on two rocks (rhyodacite and marble) were conducted, and the characteristic strength (crack stable propagation initiation stress, crack unstable propagation initiation stress and peak strength) and deformation characteristics were further analyzed. After that, using the Lemaitre strain equivalence hypothesis and rock statistical damage theory, a new statistical damage constitutive model at true triaxial stress states was proposed, which introduced the three-dimensional strength criterion Modified Wiebols Cook to characterize the three-dimensional strength of the rock microelement. Therefore, the intermediate principal stress can be reasonably considered. The damage threshold, initial compaction effect and residual strength of the rock microelement at different true triaxial stress conditions were also considered. Then the relationships between the proposed model parameters and σ 2 and σ 3 were analyzed. Furthermore, sensitivity analysis of the influence of parameters m and F 0 in proposed model on the shape of rock stress–strain curve and peak strength was also investigated. The comparison between the results predicted by proposed model and the experimental data shows that the new model established in this study can well simulate the prepeak and postpeak deformation characteristics of rock and the intermediate principal stress effect under true triaxial stress conditions.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation 用尾波干涉法表征和评价固体推进剂粉末脱粘损伤:实验研究与离散元模拟
2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-15 DOI: 10.1177/10567895231199482
Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu
{"title":"A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation","authors":"Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu","doi":"10.1177/10567895231199482","DOIUrl":"https://doi.org/10.1177/10567895231199482","url":null,"abstract":"The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling temperature dependence of tensile fracture strength for rocks considering phase transition and the direct effect of thermal damage 考虑相变和热损伤直接影响的岩石抗拉断裂强度温度依赖性模型
2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-12 DOI: 10.1177/10567895231196263
Ziyuan Zhao, Jianzuo Ma, Shifeng Zheng, Haibo Kou, Jun Qiu, Weiguo Li, Fangjie Zheng, Siyuan Lang
{"title":"Modeling temperature dependence of tensile fracture strength for rocks considering phase transition and the direct effect of thermal damage","authors":"Ziyuan Zhao, Jianzuo Ma, Shifeng Zheng, Haibo Kou, Jun Qiu, Weiguo Li, Fangjie Zheng, Siyuan Lang","doi":"10.1177/10567895231196263","DOIUrl":"https://doi.org/10.1177/10567895231196263","url":null,"abstract":"Accurately and conveniently acquiring the tensile fracture strength of rocks at different temperatures is vital no matter for the security or economical design of deep underground engineering projects. Extensive testing in the laboratory, assisted with fitting approaches, is the main method to obtain the high-temperature tensile fracture strength in the available literature. However, the high-temperature destruction test is difficult to conduct and requires numerous time and resources. In this work, considering the main physical mechanisms such as phase transition and thermal damage that affect the tensile fracture strength of rocks at high temperatures, theoretical models for predicting their temperature-dependent tensile fracture strength (TDTFS) are established based on the Force-Heat Equivalence Energy Density Principle. The presented models achieve great prediction on the different variation trends of tensile strength below and above the phase transition temperature, as well as the corresponding sudden change of strength. For rocks without phase transition, the presented model only needs some physical parameters tested at room temperature can get a good prediction capacity on the TDTFS. Moreover, a new theoretical characterization model of the equivalent thermal damage parameter was presented and take a comparison with the previous model. Finally, the potential applications and limitations of the TDTFS model are further discussed. The application threshold of the presented TDTFS models is relatively low, and they may therefore be suitable as a method for providing a rapid and preliminary evaluation of strength at a large temperature range for rock engineering.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135826435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A resilience assessment framework for microencapsulated self-healing cementitious composites based on a micromechanical damage-healing model 基于微力学损伤-愈合模型的微囊化自愈胶凝复合材料弹性评估框架
2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-11 DOI: 10.1177/10567895231197237
Kaihang Han, Jiann-Wen Woody Ju, Chengping Zhang, Dong Su, Hongzhi Cui, Xing-Tao Lin, Xiangsheng Chen
{"title":"A resilience assessment framework for microencapsulated self-healing cementitious composites based on a micromechanical damage-healing model","authors":"Kaihang Han, Jiann-Wen Woody Ju, Chengping Zhang, Dong Su, Hongzhi Cui, Xing-Tao Lin, Xiangsheng Chen","doi":"10.1177/10567895231197237","DOIUrl":"https://doi.org/10.1177/10567895231197237","url":null,"abstract":"In this paper, a resilience assessment framework for microencapsulated self-healing cementitious composites is proposed based on a micromechanical damage-healing model. A 3D micromechanical analytical model is constructed to analyze the performance evolution during the damage-healing process of self-healing concrete. The resilience assessment of microencapsulated self-healing concrete is defined by virtue of the residual stiffness, self-healing effect on stiffness and damage cumulative on stiffness, which corresponds to three main features of resilience; namely, the robustness, recoverability and adaptability. The assessment results indicate that the release of healing agents within microcapsules and healing process of extended microcracks allows the microencapsulated self-healing concrete to have higher resilience than conventional concrete. Moreover, a parameter sensitivity analysis is conducted to investigate the influence of the healing efficiency, the applied initial damage and the fracture toughness of the repaired microcrack on resilience of microencapsulated self-healing concrete. The results indicate that higher healing efficiency and applied initial damage leads to high resilience, and fracture toughness of the repaired microcrack makes less difference to the results. The findings of this paper lay a theoretical foundation for the resilience design of self-healing material layer of underground structures.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seepage-stress combined experiment and damage model of rock in different loading and unloading paths 不同加卸载路径下岩石渗流-应力组合试验及损伤模型
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-05 DOI: 10.1177/10567895231193056
Zhi Zheng, Hongyu Xu, Wei Wang, Qiang Zhang, Yujie Wang, Qiancheng Sun, Honghui Tao, Xiaofeng Han
{"title":"Seepage-stress combined experiment and damage model of rock in different loading and unloading paths","authors":"Zhi Zheng, Hongyu Xu, Wei Wang, Qiang Zhang, Yujie Wang, Qiancheng Sun, Honghui Tao, Xiaofeng Han","doi":"10.1177/10567895231193056","DOIUrl":"https://doi.org/10.1177/10567895231193056","url":null,"abstract":"In the excavation of water-related underground projects such as hydropower and energy reserves, the surrounding rock surfers complex stress path and stress state redistribution, resulting in damage and failure under the hydro-mechanical coupling condition. However, the rock hydro-mechanical coupling characteristics under complex stress paths are unclear and corresponding theoretical models are scarce. In this study, a series of tests such as triaxial compression, unloading confining pressure and cyclic loading and unloading were carried out to study the effects of different stress paths, stress levels and seepage pressure on rock deformation, strength, failure and permeability. Based on test results, the damage evolutions under three different testing paths were analyzed, a new seepage-stress coupling statistical damage model which can better simulate the compaction stage is proposed. The prediction results of the proposed model under different stress paths are in good agreement with the experimental results. Under different stress paths, the fitting relationship between parameters R0 and n and σeff is similar and has good correlation.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44620287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An entropy-based failure prediction model for the creep process 基于熵的蠕变过程失效预测模型
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-04 DOI: 10.1177/10567895231194654
Zohreh Shirazi, Bijan Mohammadi
{"title":"An entropy-based failure prediction model for the creep process","authors":"Zohreh Shirazi, Bijan Mohammadi","doi":"10.1177/10567895231194654","DOIUrl":"https://doi.org/10.1177/10567895231194654","url":null,"abstract":"The creep process is a life-limiting degradation mechanism for many parts. Consequently, it should have been considered throughout the design process. This study aimed to assess the creep curve of Inconel 718 by designing a fixed blade profile. The finite element model has been done using ABAQUS software. The temperature distribution of the vane was calculated to assess the thermal stress on the vane. For temperature analysis, the film subroutine code was written. The creep life prediction model was evaluated using creep subroutine. This model included an entropy model based on the Boltzmann theory and continuum damage mechanics. Stress and temperature were applied at a range from 100 to 900 MPa and from 620 to 800°C, respectively. Finally, an accumulation damage parameter was computed. In this investigation, all three parts of the creep curve can be achieved simultaneously. There was good agreement between the simulations performed on a vane based on this method and the samples studied in previous research.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"1 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42039799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An encoder-decoder model with embedded attention-mechanism for efficient meshfree prediction of slope failure 一种具有嵌入式注意机制的编码器-解码器模型,用于边坡破坏的有效无网格预测
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-09-01 DOI: 10.1177/10567895231193053
Jun Chen, Dongdong Wang, Like Deng, Jijun Ying
{"title":"An encoder-decoder model with embedded attention-mechanism for efficient meshfree prediction of slope failure","authors":"Jun Chen, Dongdong Wang, Like Deng, Jijun Ying","doi":"10.1177/10567895231193053","DOIUrl":"https://doi.org/10.1177/10567895231193053","url":null,"abstract":"The particle-based meshfree methods provide an effective means for large deformation simulation of the slope failure. Despite the advances of various efficient meshfree algorithmic developments, the computational efficiency still limits the application of meshfree methods for practical problems. This study aims at accelerating the meshfree prediction of the slope failure through introducing an encoder-decoder model, which is particularly enhanced by the attention-mechanism. The encoder-decoder model is designed to capture the long sequence character of meshfree slope failure analysis. The discretization flexibility of meshfree methods offers an easy match between the meshfree particles and machine learning samples and thus the resulting surrogate model for meshfree slope failure prediction has a quite wide applicability. In the meantime, the embedding of the attention-mechanism into the encoder-decoder neural network not only enables a significant reduction of the number of meshfree model parameters, but also maintains the key features of meshfree simulation and effectively alleviates the information dilution issue. It is shown that the proposed encoder-decoder model with embedded attention mechanism gives a more favorable prediction on the meshfree slope failure simulation in comparison to the general encoder-decoder formalism.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47196947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory and methods of constructing equations for the evolutionary damageability of materials 材料演化损伤性方程的理论与方法
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-08-01 DOI: 10.1177/10567895231191149
V. Fedorov
{"title":"Theory and methods of constructing equations for the evolutionary damageability of materials","authors":"V. Fedorov","doi":"10.1177/10567895231191149","DOIUrl":"https://doi.org/10.1177/10567895231191149","url":null,"abstract":"The theory and methods for constructing equations (functions) of evolutionary damage and rupture of materials in the Kachanov model (creep rupture and fatigue rupture) are presented. In general, it is proved that the factorized Kachanov model is identical to the Palmgren-Miner rule, which is often not confirmed experimentally. To construct damageability functions adequate to the experimental data, new mathematical objects (potential and normalized potential) are introduced. If the entire history of changes in the damage variable is known in experiments, then the use of the potential makes it possible to construct a damageability function of any complexity without integrating the evolutionary equation (explicit method). For cases where only rupture moments are recorded in experiments, a criterion for the adequacy of the normalized potential is formulated and an implicit method for its construction is developed. It is supplemented with a recursive algorithm that generates an unlimited number of such potentials. The implicit method is illustrated by examples, following which the reader can construct a damageability equation for his material without a thorough study of the theory.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47694590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on acoustic emission stress memory function of rock-like specimens under uniaxial compression 类岩石试件单轴压缩声发射应力记忆函数的实验研究
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2023-08-01 DOI: 10.1177/10567895231183008
Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang
{"title":"Experimental study on acoustic emission stress memory function of rock-like specimens under uniaxial compression","authors":"Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang","doi":"10.1177/10567895231183008","DOIUrl":"https://doi.org/10.1177/10567895231183008","url":null,"abstract":"The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"1008 - 1027"},"PeriodicalIF":4.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42460903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信