B. E. Lewandowski, C. M. Schkurko, R. S. Miller, R. W. Valentine, K. M. Calaway, J. D. Yang, D. J. Ebert, A. Sargsyan, V. Byrne, M. Walton, J. Lemery, R. Suresh, M. S. Thompson, B. D. Easter, K. R. Lehnhardt
{"title":"Technology modification, development, and demonstrations for future spaceflight medical systems at NASA","authors":"B. E. Lewandowski, C. M. Schkurko, R. S. Miller, R. W. Valentine, K. M. Calaway, J. D. Yang, D. J. Ebert, A. Sargsyan, V. Byrne, M. Walton, J. Lemery, R. Suresh, M. S. Thompson, B. D. Easter, K. R. Lehnhardt","doi":"10.3389/frspt.2024.1384457","DOIUrl":"https://doi.org/10.3389/frspt.2024.1384457","url":null,"abstract":"Throughout the history of human spaceflight, spacefarers have experienced and reported the occurrence of medical conditions, including various illnesses and injuries. Therefore, future spaceflight missions to the Moon and Mars will require the capabilities necessary for maintaining the health of these new space travelers. Mass, power, and volume available in the space vehicles used for these missions will be severely constrained. The ability to resupply or evacuate to Earth will be limited or non-existent, and ground-based support will no longer be immediate due to communication latencies and blackouts. These vehicle and mission constraints will necessitate healthcare be provided from an efficiently planned medical system. To provide the necessary care, these medical systems will need to include at a minimum, several different types of medical devices, consumable resources, centralized data management, procedural guidance, and decision support technologies. Medical devices needed for diagnosing and treating medical conditions that are expected to occur during future spaceflight missions may include real-time health monitoring, medical imaging capabilities, as well as blood and urine analysis. Novel methods for interacting with onboard patient medical records will be necessary, as will resource tracking. Terrestrial medicine shares many of these same needs, therefore a multitude of these required medical capabilities can likely be satisfied by currently available, Commercial-Off-The-Shelf (COTS) devices and methodologies; however, in some cases the unique space environment and increased mission durations will drive the need for modifications or customization of standard technologies and treatment procedures. This article will provide a review of medical devices and technologies that have been considered for inclusion within future spaceflight medical systems. It will also include a discussion about the modifications and customized development that have been performed, as well as descriptions of the technology demonstrations that have been conducted in analog and spaceflight environments.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia M Etlin, Luca Bielski, Julianna K. Rose, Karen Morales, Avery Belman, Emma Alexander, Emma Li, Richard Lin, Krishna Patel, Stephanie Rakhmonova, Claire Walter, Christopher E. Mason
{"title":"Enhanced astronaut hygiene and mission efficiency: a novel approach to in-suit waste management and water recovery in spacewalks","authors":"Sofia M Etlin, Luca Bielski, Julianna K. Rose, Karen Morales, Avery Belman, Emma Alexander, Emma Li, Richard Lin, Krishna Patel, Stephanie Rakhmonova, Claire Walter, Christopher E. Mason","doi":"10.3389/frspt.2024.1391200","DOIUrl":"https://doi.org/10.3389/frspt.2024.1391200","url":null,"abstract":"The current waste management system within the Extravehicular Mobility Unit (EMU) consists of a disposable diaper—the Maximum Absorbency Garment (MAG)—that collects urine and feces during extravehicular activities (EVAs) that last up to 8 h. Such exposure to waste for prolonged periods of time contributes to hygiene-related medical events, including urinary tract infections and gastrointestinal distress. Historically, prior to using the MAG, astronauts have limited their food intake or eaten a low-residue diet before embarking on physically demanding spacewalks, reducing their work performance index (WPI) and posing a health risk. Furthermore, the current 0.95 L In-suit Drink Bag (IDB) does not provide sufficient water for more frequent, longer-range spacewalks, which carry greater potential for contingency scenarios requiring extended time away from a vehicle. High transport costs per pound to space and resource scarcity exacerbate these challenges, underscoring the need for water-efficient waste management. This paper introduces a novel in-suit urine collection and filtration system developed in the Mason Lab at Weill Cornell Medical College that could address these hygiene and hydration concerns. The device would collect astronaut urine via an external catheter and filter it using forward and reverse osmosis (FO-RO) into potable water, creating a sustainable and hygienic circular water economy, enhancing astronaut wellbeing. This research aims to achieve an 85% urine collection rate using a modified MAG. The modified MAG will be made of a flexible compression material lined with antimicrobial fabric, and urine is collected through a silicone urine collection cup, which differs for male and female astronauts to conform to anatomy. Urine collection via a vacuum pump is triggered by a humidity sensor that detects the presence of urine in the cup. The FO-RO filtration system targets a minimum of 75% water recovery, while consuming less than 10% of EMU energy. To meet health standards, the filtrate maintains low salt levels (<250 ppm NaCl) and effectively removes major urine solutes (urea, uric acid, ammonia, calcium). However, further research and testing are warranted to refine and implement these innovations for future space missions, contributing to the advancement of deep space exploration technologies and astronaut health and performance.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"27 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of galvanic vestibular stimulation device as a countermeasure for microgravity effects in spaceflight","authors":"E. Soto, R. Vega","doi":"10.3389/frspt.2024.1422868","DOIUrl":"https://doi.org/10.3389/frspt.2024.1422868","url":null,"abstract":"This work discusses the challenges of space exploration, focusing on microgravity-induced physiological changes, particularly those affecting the vestibular system, which significantly alters human performance in space, necessitating effective countermeasures. In microgravity, astronauts experience disorientation and space motion sickness due to changes in vestibular input, leading to symptoms like vertigo and headache. Postflight, astronauts show various neurological changes, similar to symptoms in individuals with vestibular disorders experiencing significant cognitive and perceptual difficulties. Studies have also shown that microgravity affects cortical and sensory responses, altering perception, motor function, and brain connectivity. Galvanic Vestibular Stimulation (GVS) is explored as a countermeasure, using modulated electrical currents to evoke neuronal activity in vestibular end-organs, potentially stabilizing posture and gaze in microgravity. The work proposes that GVS could serve as a non-invasive intervention to help adapt to space environments by enhancing vestibular function and possibly aiding cognitive functions and underscores the need for continued research into the vestibular system’s role in human health and performance during space missions. It highlights the potential of GVS as a promising countermeasure for the challenges posed by microgravity.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Walther, R. Johns, H. Kolvenbach, V. Bickel, Marco Hutter
{"title":"Autonomous construction of lunar infrastructure with in-situ boulders","authors":"Jonas Walther, R. Johns, H. Kolvenbach, V. Bickel, Marco Hutter","doi":"10.3389/frspt.2024.1345337","DOIUrl":"https://doi.org/10.3389/frspt.2024.1345337","url":null,"abstract":"Significant infrastructure is required to establish a long-term presence of humans on the lunar surface. In-situ resource utilization (ISRU) is a fundamental approach to ensure the viability of such construction. Here, we investigate the feasibility of constructing blast shields as one example of lunar infrastructure using unprocessed lunar boulders and an autonomous robotic excavator. First, we estimate the volume of unprocessed material required for the construction of blast shield segments. Secondly, we quantify the amount of available boulders in two exploration zones (located at the Shackleton-Henson Connecting Ridge and the Aristarchus Plateau pyroclastic deposit) using LRO NAC images and boulder size-frequency distribution laws. In addition, we showcase an alternative approach that relies on Diviner rock abundance data. Thirdly, we use a path planning algorithm to derive the distance, energy, and time required to collect local material and construct blast shield elements. Our results show that our construction method requires two orders of magnitudes less energy than alternative ISRU construction methods, while maintaining realistic mission time and payload capacity margins.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"26 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study to characterize water contaminated by lunar dust","authors":"Rieke Freer, Victoria Pesch, Paul Zabel","doi":"10.3389/frspt.2024.1366591","DOIUrl":"https://doi.org/10.3389/frspt.2024.1366591","url":null,"abstract":"The establishment of a permanent lunar base is the goal of several space missions, such as NASA’s Artemis program. The feasibility of a lunar base is highly dependent on the supply of clean water, which can be recycled within the life support system or extracted in-situ on the Moon. Contamination of the water by lunar dust is an unavoidable problem due to the fact that lunar dust covers the entire surface and has adhesive properties as well as a very fine particle size. It is therefore important to study and characterise water contaminated by lunar dust in order to develop a safe water supply system. We combined existing studies on the dissolution behaviour of lunar regolith in aqueous solutions and performed dissolution experiments ourselves. We conducted dissolution experiments using the Lunar Highland Dust simulant from Exolith Lab (Orlando, United States), which resembles the Apollo 16 regolith and thus the terrain of the suspected Artemis landing sites. Our dissolution experiments investigate the effects of the dust to solution ratio, the aqueous solution used (ultrapure water and 5.5 buffer), the short exposure time (2 min up to 72 h), the dissolved oxygen in the solutions and the particle size of the simulant. As a result, this study provides a characterisation of lunar dust contaminated water and compares the results with the World Health Organization (WHO) and NASA requirements for drinking water. For all test batches, the lunar dust contaminated water exceeds the requirements for pH, turbidity and Al concentration.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"59 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140709692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Trautner, S. J. Barber, R. Fisackerly, D. Heather, B. Houdou, C. Howe, S. Iacobellis, M. Leese, A. Mariani, G. Meogrossi, N. Murray, C. Panza, P. Reiss, A. Rusconi, F. Abernethy, N. Cann, H. Chinnery, C. Gscheidle, P. Landsberg, R. Lindner, A. Morse, J. Mortimer, L. Nicolae, P. Picchi, S. Sheridan, A. Verchovsky
{"title":"PROSPECT: A comprehensive sample acquisition and analysis package for lunar science and exploration","authors":"R. Trautner, S. J. Barber, R. Fisackerly, D. Heather, B. Houdou, C. Howe, S. Iacobellis, M. Leese, A. Mariani, G. Meogrossi, N. Murray, C. Panza, P. Reiss, A. Rusconi, F. Abernethy, N. Cann, H. Chinnery, C. Gscheidle, P. Landsberg, R. Lindner, A. Morse, J. Mortimer, L. Nicolae, P. Picchi, S. Sheridan, A. Verchovsky","doi":"10.3389/frspt.2024.1331828","DOIUrl":"https://doi.org/10.3389/frspt.2024.1331828","url":null,"abstract":"PROSPECT is a comprehensive payload package developed by the European Space Agency which will support the extraction and analysis of lunar surface and subsurface samples as well as the acquisition of data from additional environmental sensors. The key elements of PROSPECT are the ProSEED drill and the ProSPA analytical laboratory. ProSEED will support the acquisition of cryogenic samples from depths up to 1 m and deliver them to the ProSPA instrument. ProSPA will receive and seal samples in miniaturized ovens, heat them, physically and chemically process the released volatiles, and analyze the obtained constituents via mass spectrometry using two types of spectrometers. Contextual information will be provided by cameras which will generate multi-spectral images of the drill working area and of acquired samples, and via temperature sensors and a permittivity sensor that are integrated in the drill rod. The package is designed for minimizing volatile loss from the sample between acquisition and analysis. Initially developed for a flight on the Russian Luna-27 mission, the payload package design was adapted for a more generic lander accommodation and will be flown on a lunar polar lander mission developed within the NASA Commercial Lunar Payload Services (CLPS) program. PROSPECT targets science and exploration in lunar areas that might harbor deposits of volatiles, and also supports the demonstration of In-Situ Resource Utilization (ISRU) techniques in the lunar environment. PROSPECT operations are designed to be automated to a significant degree but rely on operator monitoring during critical phases. Here, we report the PROSPECT flight design that will be built, tested, and qualified according to European space technology engineering standards before delivery to the lander provider for spacecraft integration. The package is currently in the hardware manufacturing and integration phase with a target delivery to the NASA-selected CLPS lander provider in 2025.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"526 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140749425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul A. Burke, Michael Nord, Charles Hibbitts, J. Berdis
{"title":"Modeling electrolysis in reduced gravity: producing oxygen from in-situ resources at the moon and beyond","authors":"Paul A. Burke, Michael Nord, Charles Hibbitts, J. Berdis","doi":"10.3389/frspt.2024.1304579","DOIUrl":"https://doi.org/10.3389/frspt.2024.1304579","url":null,"abstract":"Molten Regolith Electrolysis, as an in situ resource utilization (ISRU) technology, has the potential to enable the production of oxygen and metallic alloys on the Lunar surface; opening new doors in Cis-Lunar, and eventually Martian space exploration. This research studies the fundamental physics which govern the formation, growth, detachment, and rise of electrolytic bubbles. To this end, computational fluid dynamic (CFD) models were developed and run, to simulate water electrolysis, molten salt electrolysis (MSE), and molten Lunar regolith (MRE) electrolysis across multiple reduced gravity levels. The results demonstrate that reduced gravity, electrode surface roughness (possibly due to surface degradation), fluid properties, and electrode orientation can all affect electrolytic efficiency and possibly even stall electrolysis by delaying bubble detachment. The findings of this research must be considered when designing and operating electrolysis systems at reduced gravity levels.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"117 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agata K. Zupanska, Emily Lockwood, Ye Zhang, Natasha J. Haveman, John A. Carver, Charles W. Spern, Emily Senyk, Jeffrey T. Richards, Lawrence L. Koss, D. Dimapilis, Stuart F. McDaniel
{"title":"Designing payload and spaceflight operations for plants from extreme terrestrial environments","authors":"Agata K. Zupanska, Emily Lockwood, Ye Zhang, Natasha J. Haveman, John A. Carver, Charles W. Spern, Emily Senyk, Jeffrey T. Richards, Lawrence L. Koss, D. Dimapilis, Stuart F. McDaniel","doi":"10.3389/frspt.2024.1376163","DOIUrl":"https://doi.org/10.3389/frspt.2024.1376163","url":null,"abstract":"Terrestrial plants from the very limits of life are likely to harbor genes that confer an advantage in human space exploration. These plants are seemingly capable of performing mission critical functions in spaceflight and on extraterrestrial farms while informing directed gene manipulation in target plant species. However, their adaptations to physiologically extreme habitats may hinder the efficacy of routine laboratory techniques for model plants. We here present the development of Antarctic moss Ceratodon purpureus payload and flight operations for the ANT1 Radiation Tolerance Experiment with Moss in Orbit on the Space Station (ARTEMOSS) experiment to the International Space Station (ISS) given limited physical space and crew time. We demonstrate that the hydrophobic surface of Antarctic moss impedes chemical tissue fixation and precludes the use of RNAlater coupled with payload hardware deployed in standard plant spaceflight experiments. We show that deep-freezing the moss tissue on Petri plates provides adequate tissue fixation and allows the extraction of high-quality RNA suitable for gene expression profiling. We replaced hardware with stacks of Petri plates housing Antarctic moss and chemical fixation with deep-freezing in a cryogenic GLACIER freezer. Our design can be translated to other plant species to expand current experimentation techniques with plants from extreme terrestrial environments in order to advance human space exploration.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"65 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Rammelkamp, Susanne Schröder, B. Lomax, Elise Clavé, H. Hübers
{"title":"LIBS for prospecting and Raman spectroscopy for monitoring: two feasibility studies for supporting in-situ resource utilization","authors":"K. Rammelkamp, Susanne Schröder, B. Lomax, Elise Clavé, H. Hübers","doi":"10.3389/frspt.2024.1336548","DOIUrl":"https://doi.org/10.3389/frspt.2024.1336548","url":null,"abstract":"Laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy are still rather new techniques for in-situ exploration of extraterrestrial planetary surfaces but have shown their suitability and great potential in several successful robotic missions already. Next to serving primary scientific applications, both methods can also be used in the context of in-situ resource utilization (ISRU) such as scouting for wanted substances and the surveillance of extraction processes. Here, we present two laboratory studies conducted in the context of ISRU with a focus on the chain from prospecting to extracting oxygen from lunar regolith. For LIBS, with optimized data processing and combined with state-of-the-art multivariate data analysis approaches, we show the potential of the technique for identifying samples with increased ilmenite content and for elemental quantification. The measurements were done using lunar regolith simulant and low pressures simulating vacuum on atmosphereless bodies such as the Moon. With Raman spectroscopy, we analyzed lunar regolith simulant samples that underwent electrochemical alteration for oxygen extraction and production of metal alloys demonstrating the potential of Raman spectroscopy for ISRU process monitoring. We also discuss the results in a broader context, evaluating the potential of both methods for other aspects of ISRU support.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"67 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140085325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Tang, Chang Liu, Yuzhu Su, Qiuyin Wang, Weiduo Hu
{"title":"Model-based monocular 6-degree-of-freedom pose tracking for asteroid","authors":"Hao Tang, Chang Liu, Yuzhu Su, Qiuyin Wang, Weiduo Hu","doi":"10.3389/frspt.2024.1337262","DOIUrl":"https://doi.org/10.3389/frspt.2024.1337262","url":null,"abstract":"In this paper, we present a novel vision-based framework to track the 6-DoF pose of an asteroid in real time with the 3D contour of the asteroid as a feature. During pose tracking, at the beginning time of tracking, the tracking system is initialized by a pose retrieval method. At each subsequent time instant, given the 3D mesh model of an asteroid, with the initial pose and its covariance given by the square root cubature Kalman Filter (SCKF), the 3D mesh segments constituting the 3D asteroid contour are efficiently extracted from the 3D mesh model. Then, in the input asteroid image, we search the image points corresponding to the extracted 3D segments within the searching range defined by the initial pose and its covariance. After that, the asteroid pose is determined in real time by minimizing the angles between the back-projection lines of the searched image points and the projection planes of the corresponding 3D segments, which is much more robust to the position change of the asteroid and asteroid size. The covariance matrix of the pose is inferred from the Cartesian noise model in the first order. Eventually, the SCKF is derived from the second-order auto regression to generate the final pose estimate and give the initial pose and its covariance for the next time instant. The synthetic trials quantitatively validate the real-time performance, robustness, and accuracy of our algorithm in dark space, different imaging distances, lighting conditions, image noise, model error, and initial pose error, and meanwhile, the real trial qualitatively shows the effectiveness of our method.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140420723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}