Jadin C. Jackson, Rob Corey, Greg Loxtercamp, S. Stanslaski, Heather Orser, T. Denison
{"title":"Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations","authors":"Jadin C. Jackson, Rob Corey, Greg Loxtercamp, S. Stanslaski, Heather Orser, T. Denison","doi":"10.1109/NER.2015.7146781","DOIUrl":"https://doi.org/10.1109/NER.2015.7146781","url":null,"abstract":"Neurological implantable devices with electrophysiological sensing capabilities may enable new medical therapies and diagnostics. Of specific interest is phase-dependent delivery of therapy-such as electrical stimulation-as a potential method to enhance therapy effectiveness in improving diseased or damaged physiological processes with respect to rhythmic biomarkers, while minimizing the average energy required to deliver the therapy. To address this need for phase-detection, within the constraints of device power limits, we have developed a computationally efficient, causal, real-time Fourier transform (RTFT) for use as a phase detection method that is both general and highly configurable. The application of this method to theta-band local field potentials recorded from the brains of sheep is demonstrated.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123380731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Gonzalez-Trejo, Manuel C. Kohl, Alexander Steinbach, Hannes Mögele, Norbert Pfleger, D. Strauss
{"title":"Correlation between cortical inhibition and auditory stream segregation in a driving environment","authors":"E. Gonzalez-Trejo, Manuel C. Kohl, Alexander Steinbach, Hannes Mögele, Norbert Pfleger, D. Strauss","doi":"10.1109/NER.2015.7146731","DOIUrl":"https://doi.org/10.1109/NER.2015.7146731","url":null,"abstract":"Streams of information reach the brain in different modalities while driving (both from the vehicle user interface as well as the environment), each requiring a certain degree of attention from the driver. The driver should ideally be able to focus on the road ahead and not on secondary streams such as vehicle alerts, mobile phone, passengers or radio. However, the individual ability to selectively ignore distractions can have a direct influence on driving performance. Here, we use paired-chirp auditory late responses (ALRs) in order to assess long interval cortical inhibition (LICI) in healthy subjects, and compare it to the score in an auditory stream segregation task within a driving simulator. Results show significant correlation between LICI and task scores, suggesting that people with a higher/more effective cortical inhibition as measured by ALRs can ignore distracting streams easily, while people with less effective cortical inhibition find harder to concentrate on a single, more relevant stream. The fundamental results obtained suggest that cortical inhibition may be employed as a predictor of driving performance, useful for the design of auditory human-vehicle interfaces.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131248349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Crema, M. Mancuso, A. Frisoli, F. Salsedo, F. Raschellà, S. Micera
{"title":"A hybrid NMES-exoskeleton for real objects interaction","authors":"A. Crema, M. Mancuso, A. Frisoli, F. Salsedo, F. Raschellà, S. Micera","doi":"10.1109/NER.2015.7146710","DOIUrl":"https://doi.org/10.1109/NER.2015.7146710","url":null,"abstract":"Clinicians constantly face the need to rehabilitate stroke patients to re-establish coordinate reach and grasp. Rehabilitation, to be effective, requires intensive and repetitive tasks. Assist-as-needed motion control for reach and grasp assistance are usually treated separately, and mostly based on virtual reality games. To increase the clinical outcome, we designed flexible modules for a clinical platform, able to provide synchronous reach and grasp support and to interact with common objects. An upper limb exoskeleton provides the reaching support, a NMES-system based on electrode arrays provides grasp control by means of muscle contraction, and a satellite robot presents the objects to be grasped. Specific rehabilitation tasks can be implemented by taking advantage of the possibility to quantify the support needed by patients, and to modulate both the mechanical and NMES support over the reachable workspace.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122422136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity","authors":"C. Mahapatra, K. Brain, R. Manchanda","doi":"10.1016/J.BPJ.2014.11.3204","DOIUrl":"https://doi.org/10.1016/J.BPJ.2014.11.3204","url":null,"abstract":"","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117128051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Woods, Charles Wang, S. Bossi, Michele N. Insanally, M. Trumpis, R. Froemke, J. Viventi
{"title":"A low-cost, 61-channel µECoG array for use in rodents","authors":"V. Woods, Charles Wang, S. Bossi, Michele N. Insanally, M. Trumpis, R. Froemke, J. Viventi","doi":"10.1109/NER.2015.7146687","DOIUrl":"https://doi.org/10.1109/NER.2015.7146687","url":null,"abstract":"Micro-Electrocorticography (μECoG) offers a minimally invasive, high resolution interface with large areas of cortex. A wide variety of μECoG designs have been developed and customized [1]-[4], including active, multiplexed arrays [5] and arrays on dissolving substrates for increased conformal contact [6]. However, designing and fabricating customized μECoG arrays requires access to microfabrication facilities, which many neuroscience labs do not have. Microfabrication is also typically labor intensive and expensive. Commercial μECoG arrays with 64 electrodes and coarser dimensions cost approximately $1000, limiting their suitability for chronic implantation in large numbers of animals. Here we present a high density (406 μm spacing), flexible (~30 μm thin), 61-contact μECoG electrode array fabricated using a low-cost, commercial manufacturing process. The array costs just $26 when ordered in quantities of 100, with the cost per electrode increasing slightly when lower quantities are ordered. Fine pitch wires minimize the size of the interconnections, enabling chronic implantation in rodents. In-house post-processing of the fabricated μECoG arrays added optional electrode coatings, such as platinum black, to reduce the electrode impedance. Our electrode design and manufacturing process dramatically improves the accessibility and reduces the cost of high-volume, high-resolution neuroscience.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125329880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Abbasi, A. Gaume, N. Francis, G. Dreyfus, F. Vialatte
{"title":"Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms","authors":"M. A. Abbasi, A. Gaume, N. Francis, G. Dreyfus, F. Vialatte","doi":"10.1109/NER.2015.7146591","DOIUrl":"https://doi.org/10.1109/NER.2015.7146591","url":null,"abstract":"A 13-command Brain-Computer Interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) is assessed. The SSVEPs are simulated from VEP sequences recorded by electroencephalography (EEG) on the same subjects. SSVEP features extracted in the time domain are averaged over all channels of the occipital region. Most subjects achieved satisfactory classification rate (50~80% correct command detection). A simulated/offline information transfer rate of 60 bits/min is achieved, averaged across the best eight subjects. Online validation was performed on one new independent subject. The calibration procedure, based on VEP recordings, lasts one minute whatever the number of commands. Online information transfer rate of 58 bits/min is achieved.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122096595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian
{"title":"Modulated high frequency oscillations can identify regions of interest in human iEEG using hidden Markov models","authors":"Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian","doi":"10.1109/NER.2015.7146777","DOIUrl":"https://doi.org/10.1109/NER.2015.7146777","url":null,"abstract":"This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131580312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar F. Cota, Mario Schlösser, M. Schiek, T. Stieglitz, M. Gierthmuehlen, D. Plachta
{"title":"iNODE in-vivo testing for selective vagus nerve recording and stimulation","authors":"Oscar F. Cota, Mario Schlösser, M. Schiek, T. Stieglitz, M. Gierthmuehlen, D. Plachta","doi":"10.1109/NER.2015.7146675","DOIUrl":"https://doi.org/10.1109/NER.2015.7146675","url":null,"abstract":"Hypertension is a wide spread disease and despite pharmacological treatment some patients cannot obtain any relief from medication. In previous work, we could show that blood pressure can be reduced by Vagus Nerve Stimulation (VNS) almost free from side effects. In this work, we focus on the implementation of a miniaturized system using a modified embedded sensor/actuator device iNODE for vagus nerve recording and stimulation. The results illustrate that this device, using a 3.3 V power supply, 58.9 mW while stimulating, 7.8 mW while recording, is capable of reducing the blood pressure, showing equivalent results to major laboratory equipment.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115153978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cortical Activity waves are the physical carriers of memory and thought","authors":"P. Koch, Gerry Leisman","doi":"10.1109/NER.2015.7146635","DOIUrl":"https://doi.org/10.1109/NER.2015.7146635","url":null,"abstract":"Growing and propagating waves of neural activity are the natural resonant modes of synaptic energy. In a layered geometry typifying the mammalian cortex, a time delay (T) in inter-layer signals effectively controls the temporal and spatial frequencies of the waves. As a function of T, two very different types of wave can grow from ubiquitous noise. One is coherent, and its resonant spatial frequency increases with increasing T. However, further increase eventually leads to a discontinuous increase in both wavelength and temporal frequency. The result is a region of T values wherein two waves grow simultaneously and interfere in random fashion. This remarkable duality, whose origin is in the phase relations of the amplified waves, leads us to propose that coherent waves are instrumental in the retrieval of memory and random waves embody original thought.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117112458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Zbrzeski, Ricardo Siu, Y. Bornat, B. Hillen, R. Jung, S. Renaud
{"title":"A versatile fast-development platform applied to closed-loop diaphragmatic pacing","authors":"A. Zbrzeski, Ricardo Siu, Y. Bornat, B. Hillen, R. Jung, S. Renaud","doi":"10.1109/NER.2015.7146742","DOIUrl":"https://doi.org/10.1109/NER.2015.7146742","url":null,"abstract":"People with cervical spinal cord injury have partial or complete loss of ventilatory control and require ventilator assist. Open-loop diaphragmatic pacing can be utilized to provide this assist. A closed-loop diaphragmatic pacing system could overcome the drawbacks for manual titration of the stimulation and respond to changing ventilatory requirements. We have developed a versatile custom hardware platform dubbed “Multimed” for biosignal acquisition and parallel real-time computation, data display and storage. We have also developed a new rodent model for diaphragmatic pacing. Using these we illustrate, to our knowledge for the first-time, the successful ability to perform respiratory flow-phase triggered closed-loop diaphragmatic stimulation with resultant changes in respiratory flow and tidal volume.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121250087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}