Aureliano Ciervo, Cinzia Lucia Ursini, Anna Maria Fresegna, Raffaele Maiello, Antonella Campopiano, Sergio Iavicoli, Delia Cavallo
{"title":"Toxicological evaluation of polycrystalline wools in human lung cells.","authors":"Aureliano Ciervo, Cinzia Lucia Ursini, Anna Maria Fresegna, Raffaele Maiello, Antonella Campopiano, Sergio Iavicoli, Delia Cavallo","doi":"10.1080/08958378.2023.2167023","DOIUrl":"https://doi.org/10.1080/08958378.2023.2167023","url":null,"abstract":"<p><p><b>Aim:</b> Polycrystalline wools (PCW) are included with Refractory ceramic fibers (RCF) in the alumino-silicates family of High Temperature Insulation Wools (HTIW). IARC includes PCW in the ceramic fibers group and considers them as possible human carcinogens (GROUP 2B). Since PCW toxicity is not yet clear, our aim was to evaluate their toxic and inflammatory effects and to compare them with the known RCF effects.<b>Method:</b> We exposed human bronchial (BEAS-2B) and alveolar (A549) cells to 2-100 µg/mL (2.4 × 10<sup>3</sup>-1.2 × 10<sup>5</sup> fibers/mL; 2.51 × 10<sup>3</sup>-1.26 × 10<sup>5</sup> fibers/cm<sup>2</sup> of PCW and 7.4 × 10<sup>3</sup>-3.7 × 10<sup>5</sup> fibers/mL; 7.75 × 10<sup>3</sup>-3.87 × 10<sup>5</sup> fibers/cm<sup>2</sup> of RCF) of the tested fibers to evaluate potential viability reduction, apoptosis, membrane damage, direct/oxidative DNA-damage, cytokine release.<b>Results:</b> In A549, PCW did not induce cytotoxicity and apoptosis but they induced significant dose-dependent DNA-damage, although lower than RCF; only RCF induced oxidative effects. PCW also induced an increase in IL-6 release at 100 µg/mL (1.2 × 10<sup>5</sup> fibers/mL; 1.26 × 10<sup>5</sup> fibers/cm<sup>2</sup>). In BEAS-2B, PCW did not induce cell-viability reduction RCF induced a dose-dependent cell-viability decrease. Both fibers show a dose-dependent increase of apoptosis. In BEAS-2B, PCW also induced dose-dependent DNA-damage, although lower than RCF, and slight oxidative effects similar to RCF. PCW also induced an increase of IL-6 release; RCF induced a decrease of IL-8. Summarizing, PCW induce direct-oxidative DNA-damage although to a lower extent than RCF observed by both mass-based and fiber number-based analysis.<b>Conclusion:</b> For the first time, the study shows the potential toxicity of PCW, usually considered safe, and suggests to perform further <i>in vitro</i> studies, also on other cell types, to confirm these findings.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 1-2","pages":"48-58"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting the <i>in vitro</i> dissolution rate constant of mineral wool fibers from fiber composition.","authors":"Russell M Potter, John W Hoffman, John G Hadley","doi":"10.1080/08958378.2023.2166167","DOIUrl":"https://doi.org/10.1080/08958378.2023.2166167","url":null,"abstract":"<p><strong>Objective: </strong>We developed predictive formulae for the <i>in vitro</i> dissolution rate constant k<sub>dis</sub> of acid-soluble synthetic vitreous fibers (SVF), paralleling our earlier work with glass wools, which are typically more soluble at neutral pH. Developing simple models for predicting the k<sub>dis</sub> of a fiber can allow prediction of <i>in vivo</i> behavior, aid fiber developers, and potentially reduce <i>in vivo</i> testing.</p><p><strong>Methods: </strong>The k<sub>dis</sub> of several acid-soluble SVF were determined using high simulant fluid flow/fiber surface area (F/A) conditions <i>via</i> a single-fiber measurement system. Four fluids were employed, varying in base composition and citrate levels. Equations predicting the k<sub>dis</sub> were derived from fiber chemistry and dissolution measurements for two of the fluids.</p><p><strong>Results: </strong>Testing of several fibers showed a ∼10× increase in the k<sub>dis</sub> when citrate was included in the simulant solution. Data from tests with Stefaniak's citrate-free Phagoloysosmal Simulant Fluid (PSF) yielded k<sub>dis</sub> values aligned with expectations from <i>in vivo</i> results, unlike results from citrate-containing modified Gamble's solution. Predictive equations relating fiber chemistry to k<sub>dis</sub> showed reasonable agreement between the measured and predicted values.</p><p><strong>Conclusions: </strong>Citrate inclusion in the solution under high F/A conditions significantly increased the measured k<sub>dis</sub>. This resulted in more biorelevant data being obtained using the PSF fluid with the high F/A method used. The developed predictive equations, sufficient for fiber development work, require refinement before a recommending their use in place of <i>in vivo</i> biopersistence testing. Significant fit improvements are possible through additional measurements under these experimental conditions.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 1-2","pages":"40-47"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anbo Wang, Amit Gupta, Michael D Grimm, David T Pressburger, Barney R Sparrow, Jamie S Richey, John R Shaw, Karen E Elsass, Georgia K Roberts, Pei-Li Yao, Matthew D Stout, Benjamin J Ellis, Robyn L Ray
{"title":"Natural mineral fibers: conducting inhalation toxicology studies-part B: development of a nose-only exposure system for repeat-exposure <i>in vivo</i> study of Libby amphibole aerosol.","authors":"Anbo Wang, Amit Gupta, Michael D Grimm, David T Pressburger, Barney R Sparrow, Jamie S Richey, John R Shaw, Karen E Elsass, Georgia K Roberts, Pei-Li Yao, Matthew D Stout, Benjamin J Ellis, Robyn L Ray","doi":"10.1080/08958378.2023.2220735","DOIUrl":"10.1080/08958378.2023.2220735","url":null,"abstract":"<p><strong>Background: </strong>Exposure to asbestos is associated with malignant and nonmalignant respiratory disease. To strengthen the scientific basis for risk assessment on fibers, the National Institute of Environmental Health Sciences (NIEHS) has initiated a series of studies to address fundamental questions on the toxicology of naturally occurring asbestos and related mineral fibers after inhalation exposure. A prototype nose-only exposure system was previously developed and validated. The prototype system was expanded to a large-scale exposure system in this study for conducting subsequent <i>in vivo</i> rodent inhalation studies of Libby amphibole (LA) 2007, selected as a model fiber.</p><p><strong>Results: </strong>The exposure system consisting of six exposure carousels was able to independently deliver stable LA 2007 aerosol to individual carousels at target concentrations of 0 (control group), 0.1, 0.3, 1, 3, or 10 mg/m<sup>3</sup>. A single aerosol generator was used to provide aerosol to all carousels to ensure that exposure atmospheres were chemically and physically similar, with aerosol concentration as the only major variable among the carousels. Transmission electron microscopy (TEM) coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis of aerosol samples collected at the exposure ports indicated the fiber dimensions, chemical composition, and mineralogy were equivalent across exposure carousels and were comparable to the bulk LA 2007 material.</p><p><strong>Conclusion: </strong>The exposure system developed is ready for use in conducting nose-only inhalation toxicity studies of LA 2007 in rats. The exposure system is anticipated to have applicability for the inhalation toxicity evaluation of other natural mineral fibers of concern.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 7-8","pages":"214-229"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inhalation ToxicologyPub Date : 2023-01-01Epub Date: 2023-05-05DOI: 10.1080/08958378.2023.2208608
Mohammed M Laqqan, Said S Al-Ghora, Maged M Yassin
{"title":"Impact of waterpipe and tobacco cigarette smoking on global DNA methylation and nuclear proteins genes transcription in spermatozoa: a comparative investigation.","authors":"Mohammed M Laqqan, Said S Al-Ghora, Maged M Yassin","doi":"10.1080/08958378.2023.2208608","DOIUrl":"10.1080/08958378.2023.2208608","url":null,"abstract":"<p><strong>Background: </strong>Waterpipe smoking is harmful and dangerous, and it is a growing threat to public health.</p><p><strong>Objectives: </strong>This study was performed to evaluate the influence of waterpipe smoking on global DNA methylation, DNA fragmentation, and protamine deficiency in spermatozoa compared to cigarette heavy smokers and nonsmokers, and to determine whether the transcription levels of spermatozoa nuclear proteins genes '<i>PRM1</i>, <i>PRM2</i>, and <i>H2BFWT</i>' in waterpipe smokers are different compared to cigarette heavy smokers and nonsmokers.</p><p><strong>Methods: </strong>A total of 900 semen samples were collected from males with a mean age of 32.5 ± 6.3 years (300 waterpipe smokers, 300 cigarette heavy smokers, and 300 nonsmokers). The nucleic acids were isolated from purified spermatozoa, and then the global DNA methylation and transcription levels of the <i>PRM1</i>, <i>PRM2</i>, and <i>H2BFWT</i> genes were assessed using ELISA and qPCR, respectively.</p><p><strong>Results: </strong>A significant increase was found in the level of global DNA methylation (8.6 ± 0.6 ng/μl vs. 7.1 ± 0.6 ng/μl and 4.7 ± 0.6 ng/μl, <i>p</i> < 0.001), protamine deficiency (72.8 ± 15.3 vs. 51.7 ± 19.2 and 15.3 ± 5.9%, <i>p</i> < 0.001), and DNA fragmentation (73.4 ± 13.4 vs. 50.5 ± 18.9 and 9.3 ± 4.3%, <i>p</i> < 0.001) in waterpipe smokers compared to cigarette heavy smokers and nonsmokers. A significant increase was shown in the transcription levels of <i>PRM1, PRM2</i>, and <i>H2BFWT</i> genes in waterpipe smokers compared to cigarette heavy smokers and nonsmokers (<i>p</i> < 0.001). A down-regulation was found in the transcription level of these genes in different smoker groups compared to nonsmokers (<0.001).</p><p><strong>Conclusion: </strong>This study suggests that waterpipe smoking is more harmful than cigarette smoking on semen parameters, global DNA methylation, and transcription of nuclear protein genes.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 7-8","pages":"175-184"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inhalation ToxicologyPub Date : 2023-01-01Epub Date: 2023-09-20DOI: 10.1080/08958378.2023.2254323
Mirjam de Bruin-Hoegée, Duurt P W Alkema, Ruud W Busker, Marloes J A Joosen, Arjan L van Wuijckhuijse
{"title":"Real-time characterization of chemical threat agent aerosols for improvement of inhalation studies.","authors":"Mirjam de Bruin-Hoegée, Duurt P W Alkema, Ruud W Busker, Marloes J A Joosen, Arjan L van Wuijckhuijse","doi":"10.1080/08958378.2023.2254323","DOIUrl":"10.1080/08958378.2023.2254323","url":null,"abstract":"<p><strong>Objectives: </strong>Deliberate or accidental release of chemical treat agents in the aerosol form can cause an inhalation hazard. Since the relationship between aerosol properties and health hazards is poorly understood, research into the toxicological consequences of exposure to aerosols is needed. The aim of the present study was to improve the characterization of particles for inhalation studies.</p><p><strong>Methods: </strong>Several aerosol measurement technologies were compared for their potential to physically and chemically characterize particles in the inhalation size range in real-time. For that purpose, we compared the performance of an aerodynamic particle sizer (APS), a scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) in an experimental set-up in which particles were generated by a Collison nebulizer and subsequently delivered into a nose-only inhalation exposure system.</p><p><strong>Results: </strong>We found that more than 95% of the number of particles, equating to more than 83% of the mass generated by the 6-jet Collison nebulizer, were below 0.5 µm. To characterize the entire size range, the APS as single detector has only limited value, therefore the addition of supplementary instrumentation such as the SMPS or the ELPI is required. After real-time measurements in the size range of 30 nm to 10 µm, ex-situ chromatographic chemical analysis is essential for quantification of the delivered mass concentration.</p><p><strong>Conclusions: </strong>In summary, the present work demonstrates the utility of the ELPI technology, in combination with off-line analysis, for characterizing aerosols with various size, shape, charge, and composition. This makes the aerosol generation and analysis suite described a promising tool for quantitative inhalation exposure studies.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 9-10","pages":"254-265"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inhalation ToxicologyPub Date : 2023-01-01Epub Date: 2023-06-18DOI: 10.1080/08958378.2023.2224394
Tina M Sager, Pius Joseph, Christina M Umbright, Ann F Hubbs, Mark Barger, Michael L Kashon, Jeffrey S Fedan, Jenny R Roberts
{"title":"Biological effects of inhaled crude oil vapor. III. Pulmonary inflammation, cytotoxicity, and gene expression profile.","authors":"Tina M Sager, Pius Joseph, Christina M Umbright, Ann F Hubbs, Mark Barger, Michael L Kashon, Jeffrey S Fedan, Jenny R Roberts","doi":"10.1080/08958378.2023.2224394","DOIUrl":"10.1080/08958378.2023.2224394","url":null,"abstract":"<p><strong>Objective: </strong>Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few <i>in vivo</i> investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV.</p><p><strong>Materials and methods: </strong>To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses.</p><p><strong>Results: </strong>No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups.</p><p><strong>Conclusion: </strong>Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"241-253"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9649196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toxicological and epidemiological approaches to carcinogenic potency modeling for mixed mineral fiber exposure: the case of fibrous balangeroite and chrysotile.","authors":"Andrey A Korchevskiy, Ann G Wylie","doi":"10.1080/08958378.2023.2213720","DOIUrl":"https://doi.org/10.1080/08958378.2023.2213720","url":null,"abstract":"<p><strong>Context: </strong>Excess mesothelioma risk was observed among chrysotile miners and millers in Balangero, Italy. The mineral balangeroite has been identified in an asbestiform habit from the Balangero chrysotile mine (Italy). Previous studies did not contain a detailed description of the fiber dimensions, thus limiting possible approaches to estimating their carcinogenic potential.</p><p><strong>Objectives: </strong>To reconstruct excess mesothelioma risk based on characteristics of mixed fiber exposure.</p><p><strong>Methods: </strong>The lengths and widths of particles from a sample of balangeroite were measured by transmission electron microscopy (TEM). Statistical analysis and modeling were applied to assess the toxicological potential of balangeroite.</p><p><strong>Results: </strong>Balangeroite fibers are characterized as asbestiform, with geometric mean length of 10 μm, width of 0.54 μm, aspect ratio of 19, and specific surface area of 13.8 (1/μm). Proximity analysis shows dimensional characteristics of balangeroite close to asbestiform anthophyllite. Modeling estimates the average potency of balangeroite as 0.04% (95% CI 0.0058, 0.16) based on dimensional characteristics and 0.05% (95% CI-0.04, 0.24) based on epidemiological data. The available estimate of the fraction of balangeroite in the Balangero mine is very approximate. There were no data for airborne balangeroite fibers from the Balangero mine and no lung burden data are available. All estimates were performed using weight fractions of balangeroite and chrysotile. However, based on reasonable assumptions, of the seven cases of mesothelioma in the cohort, about three cases (43%) can be attributed to fibrous balangeroite.</p><p><strong>Conclusion: </strong>The presence of different types of mineral fibers in aerosolized materials even in small proportions can explain observed cancer risks.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 7-8","pages":"185-200"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10027538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbations in indices of oxidative stress, oxidative DNA damage and lung function in chronic exposure to wood dust in Southern Nigeria.","authors":"Augusta Chinyere Nsonwu-Anyanwu, Raymond Ekong Eworo, Unyime Aniekpon Fabian, Uduak Luke, Caroline Chinenyenwa Thomas, Olivia Kamsi Muoka, Unwanaabasi Okon Ufot, Chinyere Adanna Opara Usoro","doi":"10.1080/08958378.2023.2224388","DOIUrl":"10.1080/08958378.2023.2224388","url":null,"abstract":"<p><strong>Objectives: </strong>Oxidative stress (OS) and oxidative DNA damage accruing from chronic exposure to wood dust have been implicated in the development of chronic lung conditions among woodworkers. Indices of OS, inflammation, oxidative DNA damage and lung function in relation to duration of exposure to wood dust were assessed in woodworkers to determine their possible utility as risk evaluation indices for chronic lung conditions.</p><p><strong>Methods: </strong>Ninety participants comprising 30 active woodworkers, 30 passive woodworkers, and 30 controls were enrolled into this cross-sectional study. The total plasma peroxides, total antioxidant capacity (TAC), oxidative stress index (OSI), malondialdehyde (MDA), reduced glutathione, nitric oxide, high sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and peak expiratory flow rate (PEFR) were determined in all participants.</p><p><strong>Results: </strong>Woodworkers had lower PEFR, TAC, and higher malondialdehyde, OSI, hs-CRP, and 8-OHdG compared to controls (<i>p</i> < 0.05). Active woodworkers had higher malondialdehyde, 8-OHdG, and hs-CRP compared to passive woodworkers (<i>p</i> < 0.05). Increasing duration of exposure to wood dust is associated with higher malondialdehyde, hs-CRP, and 8-OHdG in active woodworkers (<i>p</i> < 0.05) and higher 8-OHdG and hs-CRP in passive woodworkers (<i>p</i> < 0.05). Negative correlation was observed between hs-CRP and TAC (<i>r</i>=-0.367, <i>p</i> = 0.048) in active workers.</p><p><strong>Conclusion: </strong>The association of exposure to wood dust with elevated indices of inflammation, OS, lipid peroxidation, oxidative DNA damage, and reduction in antioxidants and peak expiratory flow rate; and the concomitant increase in oxidative DNA damage and inflammation with increasing duration of exposure suggest that these indices may be useful in predicting woodworkers at risk of development of chronic lung conditions.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"231-240"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9631305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Pouriamehr, Valiollah Dabidi Roshan, Farimah Shirani
{"title":"Does long-term exposure to air pollution suppress parasympathetic reactivation after incremental exercise among healthy males and females?","authors":"Sara Pouriamehr, Valiollah Dabidi Roshan, Farimah Shirani","doi":"10.1080/08958378.2022.2149905","DOIUrl":"https://doi.org/10.1080/08958378.2022.2149905","url":null,"abstract":"<p><strong>Purpose: </strong>As consequences of industrial processes, air pollution has led to increased cardiovascular diseases resulting in mortality. However, there are few pieces of evidence expressing physical fitness and gender impacts in such environments. Regarding long-term exposure to air pollution, this study aimed to determine the effect of physical fitness on post-exercise cardiac parasympathetic reactivation among healthy males and females.</p><p><strong>Methods: </strong>120 individuals (46 ± 5 years) participated and were categorized into two main groups (<i>n</i> = 60; EG, CG); (1) The experimental group included individuals living in an air-polluted environment; (2) The control group included the citizens of a clean air region; and two physical fitness status subgroups (<i>n</i> = 30; active vs. sedentary) across both sexes. The heart rate (HR) changes at different timing after performing an incremental exercise, and T30 were calculated as metrics of cardiac parasympathetic reactivation.</p><p><strong>Results: </strong>The heart rate recovery values were substantially lower in EG in comparison to CG (<i>p</i> < 0.001) at different timing, while, T30 was significantly greater in residents of the air-polluted city compared to CG (<i>p</i> < 0.001). As for heart rate recovery at the 5th minute, the values were significantly lower in the steady-female group in comparison to the active females living in the air-polluted city (<i>p</i> < 0.01).</p><p><strong>Conclusion: </strong>Based on our findings, although physical fitness modifies the adverse impacts of long-term exposure to air pollution on post-exercise cardio-parasympathetic reactivation, it appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, among both sexes, it does not prevent them.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 1-2","pages":"14-23"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10726066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}