InflammationPub Date : 2025-08-01Epub Date: 2024-09-29DOI: 10.1007/s10753-024-02149-5
Meiqi Wang, Xue Huang, Jia Shu, Hongxi Li, Tao Yang, Na Li, Peizeng Yang
{"title":"Irisin Alleviates Autoimmune Uveitis Through Promoting Retinal Microglial M1 to M2 Phenotypic Polarization Mediated by HIF-1α Pathway.","authors":"Meiqi Wang, Xue Huang, Jia Shu, Hongxi Li, Tao Yang, Na Li, Peizeng Yang","doi":"10.1007/s10753-024-02149-5","DOIUrl":"10.1007/s10753-024-02149-5","url":null,"abstract":"<p><p>Irisin, proteolytically cleaved from Fndc5 protein, has been identified as an exercise-related hormone. Here, we investigated the irisin levels in aqueous humor and its involvement in the pathogenesis of uveitis. The results revealed that the irisin level in the aqueous humor was significantly decreased in Vogt-Koyanagi-Harada (VKH), and Behcet uveitis (BU) patients, and was negatively correlated with TNF-α in BU patients. Exogenous supplementation of irisin alleviated scores of experimental autoimmune uveitis (EAU) clinically and pathologically and suppressed the proportion of Th1 and Th17 cells in spleen. Fndc5<sup>-/-</sup> EAU mice exhibited more severe inflammatory manifestations with increased microglial activation in the retina. Irisin could mitigate M1 microglia and promote M2 microglia polarization. RNA sequencing of the retina showed that HIF-1α pathway was significantly enriched in Fndc5<sup>-/-</sup> EAU mice. HIF-1α pathway inhibitor significantly rescued EAU severity, associated with a decreased M1 microglial polarization in the retina of Fndc5<sup>-/-</sup> mice. In conclusion, we highlighted that irisin could alleviate uveitis by inhibiting Th1 and Th17 cells and reducing M1 microglial polarization via HIF-1α pathway.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"1716-1727"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InflammationPub Date : 2025-08-01Epub Date: 2024-10-31DOI: 10.1007/s10753-024-02179-z
Jing Lu, Yuxia He, Yong Du, Long Zhao, Ping Wu, Qinxin Shu, Hui Peng, Xing Wang
{"title":"Atorvastatin Alleviates Age-Related Macular Degeneration via AIM2-Regulated Pyroptosis.","authors":"Jing Lu, Yuxia He, Yong Du, Long Zhao, Ping Wu, Qinxin Shu, Hui Peng, Xing Wang","doi":"10.1007/s10753-024-02179-z","DOIUrl":"10.1007/s10753-024-02179-z","url":null,"abstract":"<p><p>The underlying causes of age-related macular degeneration (AMD) remain elusive and treatment options of it are limited, while atorvastatin (AT) is expected to improve AMD. Our study sought to uncover the specific mechanisms that initiate pyroptosis in AMD and elucidate whether AT ameliorates Aβ1-40-induced retinal damage by inhibiting pyroptosis. An animal model of AMD was triggered by Aβ1-40, and the therapeutic efficacy of AT was evaluated by hematoxylin and eosin staining (H&E), Optical Coherence Tomography (OCT), Electroretinogram (ERG) and other methods. Utilizing network pharmacology in conjunction with transcriptomics, we identified potential therapeutic pathways. we employed Western blotting (WB) and quantitative real-time PCR (qPCR) methodologies to evaluate the levels of pyroptosis. In vitro system of retinal pigment epithelium (RPE) cells injury was caused by Aβ1-40 and subsequently treated with AT or JC2-11. The extent of pyroptosis was quantified using enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining and WB. Cell morphological changes were examined using light microscopy and scanning electron microscopy. Network pharmacology and transcriptomics identified AIM2/Caspase-1/GSDMD as the key pathway. AT improved the retinal morphological and functional damage caused by Aβ1-40, and decreased the production of AIM2, Asc, Caspase-1, GSDMD-N, Cleaved Caspase-1 and cytokines to exert an anti-inflammatory effect. In addition, AT improved the ruptured membrane of RPE cells caused by Aβ1-40. The use of JC2-11 further demonstrated that AT inhibits pyroptosis of RPE via AIM2/Caspase-1/GSDMD pathway activated by Aβ1-40. These discoveries illuminate the retinal conservation role of AT by effectively hindering the progression of pyroptosis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2122-2136"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InflammationPub Date : 2025-08-01Epub Date: 2024-11-15DOI: 10.1007/s10753-024-02186-0
Mingqiong Yu, Fengrui Wang, Ke Han
{"title":"Silencing of SH3BP2 Inhibits Microglia Activation Via the JAK/STAT Signaling in Spinal Cord Injury Models.","authors":"Mingqiong Yu, Fengrui Wang, Ke Han","doi":"10.1007/s10753-024-02186-0","DOIUrl":"10.1007/s10753-024-02186-0","url":null,"abstract":"<p><p>The purpose of our study was to investigate the expression of SH3 domain-binding protein 2 (SH3BP2) in spinal cord injury (SCI) rats and lipopolysaccharide (LPS)-induced microglia, and explored its impact as well as potential mechanism. We examined the level of SH3BP2 in SCI rats using GEO data, immunofluorescence co-staining, qRT-PCR and western blotting. Next, we constructed a rat model with SH3BP2 silencing by injecting LV-shSH3BP2 into the injury site of SCI rats, and then evaluated its neurological outcome, functional recovery, M1 polarization and neuroinflammation by Basso-Beattie-Bresnahan (BBB) score, inclined plane test, Nissl staining and hematoxylin-eosin (H&E). The SH3BP2-related signaling pathway was predicted by KEGG analysis in GSE45006 dataset. BV2 microglial cells and primary microglia were incubated with LPS, and then measured its activation and inflammation by qRT-PCR, western blotting and immunofluorescence. Further complement experiments were performed to explore the molecular mechanisms of SH3BP2. The expression of SH3BP2 was increased in the spinal dorsal horn tissues of SCI rats and LPS-induced microglia. Silencing of SH3BP2 improved neurological outcomes and functional recovery, attenuated neuroinflammation and microglia polarization in SCI rats. Additionally, the JAK/STAT pathway was regulated by SH3BP2. Silencing of SH3BP2 inhibited LPS-induced microglia inflammation and activation, decreased the phosphorylation levels of JAK and STAT. Silencing of SH3BP2 attenuated SCI by regulating the JAK/STAT pathway to inhibit the activation of microglia.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2230-2243"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering the Mechanism of Scopoletin in Ameliorating Psoriasis-Like Skin Symptoms via Inhibition of PI3K/Akt/mTOR Signaling Pathway.","authors":"Dongna Wang, Wenyan Tang, Neng Sun, Kaimei Cao, Qinghuan Li, Shuai Li, Chenggui Zhang, Jianquan Zhu, Jiali Zhu","doi":"10.1007/s10753-024-02188-y","DOIUrl":"10.1007/s10753-024-02188-y","url":null,"abstract":"<p><p>Psoriasis is a common chronic inflammatory skin disease, that always seriously decreases the patient's quality of life. To date, the drugs used to treat psoriasis have severe side effects and poor efficacy, making the development of new drugs urgent. Scopoletin (SCP), a coumarin component extracted from plants such as Artemisia indica and Arabidopsis thaliana, was reported to have anti-inflammatory and immunomodulatory effects. In this study, network pharmacology and molecular docking techniques were utilized to predict the potential possibilities and mechanism of SCP's therapeutic effects on psoriasis. It was shown that SCP may mainly affect interleukin-17 (IL-17), tumor necrosis factor (TNF) and phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, especially the key targets including TNF, Akt1, IL-6, epidermal growth factor receptor (EGFR) and heat shock protein 90 alpha family class A member 1 (HSP90AA1). Imiquimod (IMQ)-induced psoriasis-like mice were used to verify the therapeutic effects of SCP. We observed SCP could significantly alleviate psoriasis-like skin symptoms, improve the pathological changes, inhibit spleen enlargement and decrease the expression of inflammation factors in IMQ-induced mice. Besides, SCP could also inhibit the phosphorylation of PI3K, Akt, and mTOR, and the good docking activity of SCP with the three pathway proteins further proved SCP can treat psoriasis via PI3K/Akt/mTOR signaling pathway. In conclusion, SCP may be a potential drug for treating psoriasis and is worth further research.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2258-2273"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7.","authors":"Juber Herrera-Uribe, Orla Convery, Daniah ALmohammadi, Fabienne Ingrid Weinberg, Nigel J Stevenson","doi":"10.1007/s10753-024-02163-7","DOIUrl":"10.1007/s10753-024-02163-7","url":null,"abstract":"<p><p>SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"1607-1623"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NOD3 Reduces Sepsis-Induced Acute Lung Injury by Regulating the Activation of NLRP3 Inflammasome and the Polarization of Alveolar Macrophages.","authors":"Yue Zhao, Yongran Wu, Lianlian Qu, Yingying Hu, Shengwen Sun, Ruishan Yao, Ruiting Li","doi":"10.1007/s10753-024-02197-x","DOIUrl":"10.1007/s10753-024-02197-x","url":null,"abstract":"<p><p>The pathogenesis of sepsis-induced Acute lung injury (ALI) progresses rapidly, and no effective treatment drugs are known, resulting in a high mortality rate. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation plays an important role in the pathological progression of ALI, and often coincide with the inflammatory activation and polarization of macrophages. NLR family CARD domain-containing protein 3 (NOD3) was reported protecting against sepsis-induced pulmonary pathological injury and inhibiting the inflammatory response in lung tissue. NOD3 can also inhibit NLRP3 inflammasome activation by competitively inhibiting the binding of pro-caspase-1 to apoptosis-related ASC or reducing NLRP3/cryopyrin-induced ASC speckle formation. In this study, we aimed to explore whether NOD3 decrease sepsis-induced lung injury by interfering with NLRP3 inflammasome activation and regulating alveolar macrophages (AMs) polarization. To investigate whether NOD3 reduce sepsis-induced ALI by inhibiting the activation of NLRP3 inflammasome to regulate the polarization of AMs. Sepsis-induced WT (C57BL/6) and NLRC3<sup>-</sup><sup>/</sup><sup>-</sup>-C57BL/6 mice ALI models were established by intraperitoneal injection of lipopolysaccharide (LPS). In vitro experiments, AMs and bone marrow-derived macrophages (BMDMs) were isolated from WT and NLRC3<sup>-</sup><sup>/</sup><sup>-</sup> mice. Using in vivo and in vitro experiments, we found that NOD3 knockout promoted the sepsis-induced inflammatory response in lung tissue. In addition, NOD3 knockout promoted the activation of the TRAF6-NF-κB signaling pathway and the NLRP3 inflammasome in AMs, enhanced the M1-type polarization of AMs and decreased the M2-type polarization of AMs in sepsis-induced lung injury model mice. NOD3 interfered with NLRP3 inflammasome activation by inhibiting NLRP3 inflammasome assembly or negatively regulating the TRAF6-NF-κB signaling pathway, and regulating the polarization of AMs, thereby alleviating sepsis-induced lung injury.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2395-2406"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sappanone A Ameliorates Concanavalin A-induced Immune-Mediated Liver Injury by Regulating M1 Macrophage Polarization.","authors":"Fenglian Yan, Wenbo Li, Xueyang Sun, Lin Wang, Zhihong Liu, Zhaoming Zhong, Zhengran Guo, Ziyu Liu, Min Gao, Junfeng Zhang, Changying Wang, Guanjun Dong, Chunxia Li, Shang Chen, Huabao Xiong, Hui Zhang","doi":"10.1007/s10753-024-02189-x","DOIUrl":"10.1007/s10753-024-02189-x","url":null,"abstract":"<p><p>Sappanone A (SAP), a high-isoflavone compound derived from the traditional Chinese medicine Sumu, exhibits various pharmacological activities, including anti-inflammatory and anti-oxidant effects. However, its protective effects on the liver have rarely been reported. The aim of this study was to investigate the effects of SAP on immune-mediated liver injury induced by concanavalin A (Con A) in mice and to explore the underlying molecular mechanisms. Mice were administered SAP intraperitoneally (50 mg/kg body weight). Three hours later, Con A (18 mg/kg) was injected via the tail vein to induce liver damage. Livers and blood were collected 12 h after Con A challenge. Liver cell apoptosis, oxidative stress, and M1 macrophage activation in vivo were investigated. Bone marrow-derived macrophages were used to confirm the effects of SAP on M1 polarization in vitro. The results indicated that SAP decreased transaminase levels, inhibited apoptosis, and improved oxidative stress in mouse livers. Furthermore, SAP significantly reduced the proportion of macrophages, inhibited the expression of CD86, and downregulated the expression of M1 macrophage-related inflammatory cytokines. Moreover, SAP-treated macrophages alleviated liver damage caused by Con A compared to non-SAP-treated macrophages. Mechanistically, SAP inhibited the phosphorylation of key molecules in the MAPK and NF-κB signaling pathways in macrophages, resulting in an inhibitory effect on M1 macrophage activation. Taken together, SAP alleviates immune-mediated liver injury induced by Con A by suppressing M1 macrophage polarization, which is partially associated with NF-κB and MAPK signaling pathways.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2274-2291"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12336090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple Machine Learning Identifies Key Gene PHLDA1 Suppressing NAFLD Progression.","authors":"Zhenwei Yang, Zhiqin Chen, Jingchao Wang, Yizhang Li, Hailin Zhang, Yu Xiang, Yuwei Zhang, Zhaozhao Shao, Pei Wu, Ding Lu, Huajiang Lin, Zhaowei Tong, Jiang Liu, Quan Dong","doi":"10.1007/s10753-024-02164-6","DOIUrl":"10.1007/s10753-024-02164-6","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) poses a serious global health threat, with its progression mechanisms not yet fully understood. While several molecular markers for NAFLD have been developed in recent years, a lack of robust evidence hampers their clinical application. Therefore, identifying novel and potent biomarkers would directly aid in the prediction, prevention, and personalized treatment of NAFLD. We downloaded NAFLD-related datasets from the Gene Expression Omnibus (GEO). Differential expression analysis and functional analysis were initially conducted. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) and multiple machine learning strategies were employed to screen and identify key genes, and the diagnostic value was assessed using Receiver Operating Characteristic (ROC) analysis. We then explored the relationship between genes and immune cells using transcriptome data and single-cell RNA sequencing (scRNA-seq) data. Finally, we validated our findings in cell and mouse NAFLD models. We obtained 23 overlapping differentially expressed genes (DEGs) across three NAFLD datasets. Enrichment analysis revealed that DEGs were associated with Apoptosis, Parathyroid hormone synthesis, secretion and action, Colorectal cancer, p53 signaling pathway, and Biosynthesis of unsaturated fatty acids. After employing machine learning strategies, we identified one gene, pleckstrin homology like domain family A member 1 (PHLDA1), downregulated in NAFLD and showing high diagnostic accuracy. CIBERSORT analysis revealed significant associations of PHLDA1 with various immune cells. Single-cell data analysis demonstrated downregulation of PHLDA1 in NAFLD, with PHLDA1 exhibiting a significant negative correlation with macrophages. Furthermore, we found PHLDA1 to be downregulated in an in vitro hepatic steatosis cell model, and overexpression of PHLDA1 significantly reduced lipid accumulation, as well as the expression of key molecules involved in hepatic lipogenesis and fatty acid uptake, such as FASN, SCD-1, and CD36. Additionally, gene set enrichment analysis (GSEA) pathway enrichment analysis suggested that PHLDA1 may influence NAFLD progression through pathways such as Cytokine Cytokine Receptor Interaction, Ecm Receptor Interaction, Parkinson's Disease, and Ribosome pathways. Our conclusions were further validated in a mouse model of NAFLD. Our study reveals that PHLDA1 inhibits the progression of NAFLD, as overexpression of PHLDA1 significantly reduces lipid accumulation in cells and markedly decreases the expression of key molecules involved in liver lipogenesis and fatty acid uptake. Therefore, PHLDA1 may emerge as a novel potential target for future prediction, diagnosis, and targeted prevention of NAFLD.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"1912-1928"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InflammationPub Date : 2025-08-01Epub Date: 2024-10-28DOI: 10.1007/s10753-024-02174-4
Ying Tu, Hua Gu, Na Li, Dongjie Sun, Zhenghui Yang, Li He
{"title":"Identification of Key Genes Related to Immune-Lipid Metabolism in Skin Barrier Damage and Analysis of Immune Infiltration.","authors":"Ying Tu, Hua Gu, Na Li, Dongjie Sun, Zhenghui Yang, Li He","doi":"10.1007/s10753-024-02174-4","DOIUrl":"10.1007/s10753-024-02174-4","url":null,"abstract":"<p><p>Several physical and chemical factors regulate skin barrier function. Skin barrier dysfunction causes many inflammatory skin diseases, such as atopic dermatitis and psoriasis. Activation of the immune response may lead to damage to the epidermal barrier. Abnormal lipid metabolism is defined as abnormally high or low values of plasma lipid components such as plasma cholesterol and triglycerides. The mouse skin barrier damage model was used for RNA sequencing. Bioinformatics analysis and validation were performed. Differently expressed genes (DEGs) related to immune and lipid metabolism were screened by differentially expressed gene analysis, and the enriched biological processes and pathways of these genes were identified by GO-KEGG. The interactions between DEGs were confirmed by constructing a PPI network. GSEA, transcription factor regulatory network, and immune infiltration analyses were performed for the 10 genes. Expression validation was performed by public datasets. The expression of key genes in mouse skin tissue was detected by qPCR. The expression of differentially expressed immune cell markers in the skin was detected by immunofluorescence. Based on the trans epidermal water loss (TEWL) score, the expression of key genes was detected by qPCR before skin barrier injury, at 4h and 7d, and at recovery from injury. Il17a, Il6, Tnf, Itgam, and Cxcl1 were immune-related key genes. Pla2g2f, Ptgs2, Plb1, Pla2g3, and Pla2g2d were key genes for lipid metabolism. Database validation and experimental results revealed that the expression trends of these genes were consistent with our analyses. The research value of these genes has been demonstrated through mouse datasets and experimental validation, and future therapeutic approaches may be able to mitigate the disease by targeting these genes to modulate the function of the skin barrier.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2051-2068"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InflammationPub Date : 2025-08-01DOI: 10.1007/s10753-024-02143-x
Vanessa D'Antongiovanni, Carolina Pellegrini, Laura Benvenuti, Matteo Fornai, Clelia Di Salvo, Gianfranco Natale, Larisa Ryskalin, Lorenzo Bertani, Elena Lucarini, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Zoltan H Nemeth, György Haskó, Luca Antonioli
{"title":"Retraction Note: Anti-inflammatory Effects of Novel P2X4 Receptor Antagonists, NC-2600 and NP-1815-PX, in a Murine Model of Colitis.","authors":"Vanessa D'Antongiovanni, Carolina Pellegrini, Laura Benvenuti, Matteo Fornai, Clelia Di Salvo, Gianfranco Natale, Larisa Ryskalin, Lorenzo Bertani, Elena Lucarini, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Zoltan H Nemeth, György Haskó, Luca Antonioli","doi":"10.1007/s10753-024-02143-x","DOIUrl":"10.1007/s10753-024-02143-x","url":null,"abstract":"","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"2841"},"PeriodicalIF":5.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12336073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}