曲希鲁汀对脑室酸诱导的神经毒性中氧化应激、炎症和凝集素- 3表达的影响。

IF 4.5 2区 医学 Q2 CELL BIOLOGY
Mehmet Demir, Hulya Elbe, Dilan Cetinavci, Ercan Saruhan
{"title":"曲希鲁汀对脑室酸诱导的神经毒性中氧化应激、炎症和凝集素- 3表达的影响。","authors":"Mehmet Demir, Hulya Elbe, Dilan Cetinavci, Ercan Saruhan","doi":"10.1007/s10753-025-02301-9","DOIUrl":null,"url":null,"abstract":"<p><p>Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity.\",\"authors\":\"Mehmet Demir, Hulya Elbe, Dilan Cetinavci, Ercan Saruhan\",\"doi\":\"10.1007/s10753-025-02301-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02301-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02301-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

兴奋性神经递质谷氨酸浓度过高引起的兴奋性毒性可导致神经元细胞死亡并促进神经退行性疾病。神经兴奋性神经毒素kainic acid (KA)可诱导兴奋性毒性,通过氧化应激和炎症导致神经元死亡,其实验应用广泛。本研究旨在探讨曲克鲁丁(TXR)对实验性兴奋性神经炎症和氧化应激的保护作用及其与半乳糖凝集素-3 (Gal-3)的关系。50只雄性Wistar大鼠分为5组(n = 10):对照组大鼠腹腔灌胃生理盐水,灌胃6 d;假手术组大鼠第1天给予单剂量脑室生理盐水。KA组大鼠给予单剂量KA;icv - 0.5μg /μl)。TXR组大鼠给予TXR 6 d: ip-100 mg/kg), KA + TXR组大鼠给予KA(单剂量)+ TXR (6 d)。结果表明,KA神经毒性大鼠大脑皮层丙二醛(MDA)和白细胞介素-1β (IL-1β)水平升高,还原型谷胱甘肽(GSH)水平降低。TXR治疗引起兴奋性毒性模型大鼠MDA和GSH水平的显著改善,IL-1β水平的显著降低。ka处理大鼠海马和小脑中Gal-3表达增加,而TXR处理则降低Gal-3表达。此外,KA给药引起的组织病理学改变在txr治疗组有所改善。综上所述,TXR治疗通过降低氧化组织损伤、炎症反应和Gal-3表达来减轻ka诱导的神经毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity.

Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信