Hasnatul Fitriah Abd Rahim, Mohammad Nor Jalil, S. H. Sarijo, Faeiza Buyong, H. M. Zaki
{"title":"Synthesis, Characterization, and Control Release of Zinc Layered Nitrate Intercalated with Beta-Napthoxyacetic Acid (BNOA) Nanocomposite","authors":"Hasnatul Fitriah Abd Rahim, Mohammad Nor Jalil, S. H. Sarijo, Faeiza Buyong, H. M. Zaki","doi":"10.22146/ijc.88459","DOIUrl":"https://doi.org/10.22146/ijc.88459","url":null,"abstract":"In this research, the synthesis of the host using zinc nitrate-hexahydrate as a precursor to form zinc layered nitrate (ZLN) and the guest anion which is beta-napthoxyacetic acid (BNOA) will be intercalated with the ZLN to produce nanocomposites called ZLN/beta-napthoxyacetic acid (ZLNB). The method used for the synthesis of the host was self-assembly and ion exchange. The nanocomposites were confirmed with the basal spacing increases from 9.8 to 28.2 Å by using powder X-ray diffraction (PXRD). Therefore, proved the bigger basal spacing compared to the layered double hydroxide of MgAl and ZnAl. The appearance of the FTIR shift band at 1603 cm−1 of C=C aromatic ring indicates that the anions have been successfully incorporated into the interlayers of ZLNB. Moreover, the loading percentage estimated by the carbon content from the ZLNB determined by CHNS analyzer was 41.8% (w/w). The morphology analysis confirmed the plate-like structure for ZLN into flaky-like with irregular, porous and unambiguous structure for ZLNB by field emission scanning electron microscopy (FESEM). The controlled release property showed that the release of BNOA in the various aqueous solutions is in the order of Na3PO4 > Na2SO4 > NaCl and fitted into pseudo-second-order kinetic models.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Y. Al-Assafe, Rana Abdul Malik Sulaiman Al-Quaba
{"title":"New Series of Ni(II), Cu(II), Zr(IV), Ag(I), and Cd(II) Complexes of Trimethoprim and Diamine Ligands: Synthesis, Characterization, and Biological Studies","authors":"A. Y. Al-Assafe, Rana Abdul Malik Sulaiman Al-Quaba","doi":"10.22146/ijc.89167","DOIUrl":"https://doi.org/10.22146/ijc.89167","url":null,"abstract":"New compounds series of [M(TMP)(en)]X·nH2O and [M(TMP)(PD)]X·nH2O, where M = Ni2+, Cu2+, Zr4+, Ag+, Cd2+, TMP = trimethoprim, en = ethylenediamine, PD = o-phenylene and X= Cl− or NO3−, were prepared. The compounds were characterized using techniques including melting points, conductance, elemental analysis, FTIR, NMR, and mass spectroscopy. FTIR spectra indicated TMP acted like a bi-dentate ligand, combining via the nitrogen atoms of azomethine and pyrimidine amino groups. Diamine ligands (en or o-PD) are coordinated via two nitrogen atoms. Prepared compounds showed monomeric behavior and adopted a 6-coordinate octahedral geometry based on magnetic susceptibility and UV spectra. Conductivity measurements revealed Zr(IV) compounds were 1:2 conductive, while Ag+ and Cd2+ were 1:1 conductive; Ni2+ and Cu2+ compounds were non-conductive. Antibacterial tests on compounds and ligands against Bacillus subtilis and Staphylococcus aureus demonstrated broad-spectrum antibacterial activity. The mixed metal compounds revealed an observable tendency of antibacterial activity in the order Zr > Cd = Ag > Cu, making Zr(IV) compounds the most biologically active among them against S. aureus (Gram-positive) while the same compounds showed less antibacterial activity against B. subtilis (Gram-negative) than the free ligand.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nafisatus Zakiyah, N. Kusumawati, P. Setiarso, S. Muslim, Qurrota A'yun, Marinda Mayliansarisyah Putri
{"title":"Characterization and Application of Natural Photosensitizer and Poly(vinylidene Fluoride) Nanofiber Membranes-Based Electrolytes in DSSC","authors":"Nafisatus Zakiyah, N. Kusumawati, P. Setiarso, S. Muslim, Qurrota A'yun, Marinda Mayliansarisyah Putri","doi":"10.22146/ijc.86386","DOIUrl":"https://doi.org/10.22146/ijc.86386","url":null,"abstract":"This comprehensive research has explored the potential of enhancing dye-sensitized solar cells (DSSC) by harnessing environmentally friendly natural dyes, such as chlorophyll pigments from pandanus (664.1 nm) and papaya leaves (664.0 nm), as well as betacyanin pigments from sappan-mangosteen (536.2 nm). Electrochemical analyses elucidated the energy band gaps, revealing a hierarchy with the smallest band gap observed for papaya leaves (1.387 eV), followed closely by sappan-mangosteen (1.389 eV) and pandan leaves (1.396 eV). This research effectively addressed the persistent issue of electrolyte leakage in DSSC development by introducing a polymer electrolyte derived from polyvinylidene fluoride (PVDF) through electrospinning and phase inversion techniques. SEM characterization results and thermogravimetric analysis underscored the superior characteristics and high thermal stability of the PVDF nanofiber polymer for DSSC applications. The study's pivotal findings underscore the remarkable DSSC performance achieved with chlorophyll pigment from papaya leaves, reaching 1.31% efficiency without a polymer electrolyte. Moreover, the sappan-mangosteen dye emerged as a promising contender with the highest efficiency values when applied with polymer electrolyte, recording rates of 1.17% for PVDF NF and 0.95% for PVDF, which are notably comparable to the efficiency of liquid electrolyte at 1.26%.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Suyanta, Sunarto Sunarto, R. T. Padmaningrum, K. Karlinda, I. Isa, R. Zainul, Q. Fardiyah, Fredy Kurniawan
{"title":"Development of Voltammetry Analysis Method of Iron Metal Ions by Solid-State Membrane with Carbon Nanotube","authors":"S. Suyanta, Sunarto Sunarto, R. T. Padmaningrum, K. Karlinda, I. Isa, R. Zainul, Q. Fardiyah, Fredy Kurniawan","doi":"10.22146/ijc.81771","DOIUrl":"https://doi.org/10.22146/ijc.81771","url":null,"abstract":"This work developed a selectively modified electrode for measuring the Fe(II) ions in continuous integration using voltammetry techniques. The study assessed various aspects, such as linearity, scan rate, repeatability, and real sample analysis. The experiment is performed using differential pulse voltammetry (DPV). The findings of the study indicated that the voltammetry method exhibited a regression line of y = 36.507 ln(x) + 990.73, with a correlation value of 0.9627, with an optimum scan rate of 20 mV/s and good repeatability over five times measurement. On the other hand, when comparing the results using the UV-Vis spectrophotometric technique, the regression equation was found to be y = 0.20438x − 0.06987, with a correlation value of 0.99583. Notably, the voltammetry measurement outperformed the UV-Vis method since it allowed analysis of Fe(II) at concentrations up to 6.35 × 10−4 ppm (or 1.00 × 10−11 M), while the UV-vis measurement could only analyze up to 1.5 ppm (or 2.36 × 10−5 M). Consequently, the developed technique proves to be superior to the other methods for the analysis of Fe(II).","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dedi Mardiansyah, Sri Rahayu Alfitri Usna, S. Nafisah, H. Harsojo, R. G. Hatika
{"title":"Improving the Performance of Transparent Conducting Electrodes Based on Cu Nanowires","authors":"Dedi Mardiansyah, Sri Rahayu Alfitri Usna, S. Nafisah, H. Harsojo, R. G. Hatika","doi":"10.22146/ijc.85156","DOIUrl":"https://doi.org/10.22146/ijc.85156","url":null,"abstract":"The fabrication of transparent conducting electrodes (TCEs) is dominated by indium tin oxide (ITO). Some efforts are being made to find alternative materials as a substitute for ITO. Cu nanowire (CuNWs) is an equivalent candidate as a replacement for ITO but has a weakness that is easily oxidized. In this contribution, we report an increase in the performance of CuNWs, which can reduce the effect of oxidation. In this study, we provide a coating of CuNWs using PVP, PVA, and silver nanoparticles (AgNPs). The morphology, formation structure, and conductivity of CuNWs have been investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and IV meter. The average length and diameter of the CuNWs were 5.5 μm and 120 nm, respectively. The transparent conducting has a stable conductivity after coating with PVP, PVA and AgNPs. The application of transparent conducting electrodes are sensors, electronic devices, solar cells, and organic light-emitting diodes (OLEDs).","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Anticancer Activity of Gold Complex with Newly Ligand (DDIBM): Synthesis, Spectral Identification and Magnetic Susceptibility of Its Metallic Complexes","authors":"Siham Sami Noor, I. K. Kareem","doi":"10.22146/ijc.89954","DOIUrl":"https://doi.org/10.22146/ijc.89954","url":null,"abstract":"The new heterocyclic ligand, 5-(dimethylamino)-2-(((2-((E)-(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)benzyl)imino)methyl)phenol (DDIBM), was synthesized via the condensation of p-aminobenzylamine with 4,5-diphenyl imidazole, and the resultant compound was condensed with 4-(dimethylamino)-2-hydroxybenzaldehyde. Various instrumental techniques such as mass, 1H-NMR, IR, C.H.N elemental analysis, and UV-vis spectroscopy were used to analyze a newly synthesized ligand. A novel series of complexes was prepared by complexing the ligand with Ni(II), Cu(II), Co(II), and Au(III) and characterized using some of the mentioned techniques. Flame atomic absorption spectroscopy was used to measure the metal ion percentages in the complexes. The magnetic susceptibility and molar conductivity were studied. The electronic spectral data and the magnetic measurement predict the octahedral structure of the complexes except Au(III) complex which has square planer geometry. All complexes showed electrolyte properties. This study aimed to conduct an in vitro cytotoxicity comparative study of DDIBM and its Au(III) complex on human breast cancer cells (MCF-7) and other normal cells. The Au(III) complex was found to be highly selective in targeting cancer cells without affecting normal healthy cells, compared to the ligand. Thus, this complex can be considered as a new drug for treating breast cancer cells (MCF-7), and an attempt in the future to study its effect on other types of cancer.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Mitaphonna, Muliadi Ramli*, Nazlina Ismail, Nasrullah Idris Arief
{"title":"Qualitative Geochemical Analysis of the 2004 Indian Ocean Giant Tsunami Deposits Excavated at Seungko Mulat Located in Aceh Besar of Indonesia Using Laser-Induced Breakdown Spectroscopy","authors":"R. Mitaphonna, Muliadi Ramli*, Nazlina Ismail, Nasrullah Idris Arief","doi":"10.22146/ijc.88086","DOIUrl":"https://doi.org/10.22146/ijc.88086","url":null,"abstract":"Laser-induced breakdown spectroscopy (LIBS) was employed to characterize the geochemical signatures layer by layer of 2004 Indian Ocean tsunami deposits in Seungko Mulat Village, Aceh Province, Indonesia. In the LIBS experimental setup, a Nd-YAG laser beam is directed towards the deposit samples, and the resulting atomic emission lines from the laser-induced plasma are captured using a spectrometer. Our analysis reveals terrestrial indicators (Fe), heavy metals (Cu, Cr, Co, Cd), and increased emission intensity of Mg, Ca, Al, K, Si, Ba, N, and O in the 2004 Indian Ocean tsunami layers. The emission intensity ratios of several elements in the 2004 Indian Ocean tsunami deposit layers, namely Ca/Ti, Si/Ti, and K/Ti, unveil notable disparities among the elements evaluated. This indicates the possibility of utilizing these ratios as reliable geochemical markers to differentiate the layer by layer of tsunami deposits. LIBS surpasses XRF in detecting nearly all elements simultaneously and identifying both light elements and specific heavy metals (Ba, Cu, Cr, Co, Cd, Pb, Ni, V, W), exceeding XRF's detection capabilities. This study emphasizes the effectiveness of LIBS as an advanced optical technique, offering speed and promise in analyzing layer-by-layer geochemical markers of the 2004 Indian Ocean tsunami deposits in Seungko Mulat Village.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Supriyatna, Agus Prasetya, Widi Astuti, S. Sumardi, Priskila Natalia, D. M. Adythia, H. T. Petrus
{"title":"Low-Grade Ilmenite Leaching Kinetics Using Hydrochloric Acid: RSM and SCM Approaches","authors":"Y. Supriyatna, Agus Prasetya, Widi Astuti, S. Sumardi, Priskila Natalia, D. M. Adythia, H. T. Petrus","doi":"10.22146/ijc.79092","DOIUrl":"https://doi.org/10.22146/ijc.79092","url":null,"abstract":"Minerals containing TiO2 are common in Indonesia, such as ilmenite in iron sand deposits scattered along the country's coasts. Ilmenite is an important source of titanium. One method for making TiO2 from ilmenite is by solubilizing both the Fe and Ti elements in HCl and then immediately hydrolyze the Ti. The leaching of low-grade ilmenite (ground to 0.177-0.149 mm) is studied kinetically by HCl in a stirred reactor. The research was conducted using the caustic fusion method followed by HCl leaching. The leaching reaction kinetics at the optimum conditions are analyzed using response surface methodology (RSM) with a second-order polynomial equation model and SSE with the shrinking core model (SCM). The results showed that HCl concentration and leaching time were directly proportional to the leached titanium concentration. In contrast, the leaching temperature was inversely proportional. The optimum operating conditions were obtained at a temperature of 30 °C, 9 M HCl, and 120 min of leaching time. The shrinking core model is a better representation of the kinetics than RSM with a second-order polynomial equation model. Based on SCM, the rate of the leaching reaction of titanium from low-grade ilmenite is controlled by diffusion through the ash layer.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Gunarto, A. Go, Artik Elisa Angkawijaya, Jenni Lie, F. Soetaredjo, S. Ismadji, N. Puspitasari, J. N. Putro, Chandra Risdian
{"title":"Pseudoternary Phase Diagram and Antibacterial Activity of Microemulsion-Based Citronella Oil","authors":"C. Gunarto, A. Go, Artik Elisa Angkawijaya, Jenni Lie, F. Soetaredjo, S. Ismadji, N. Puspitasari, J. N. Putro, Chandra Risdian","doi":"10.22146/ijc.93250","DOIUrl":"https://doi.org/10.22146/ijc.93250","url":null,"abstract":"Citronella oil (CTO) is extracted from citronella leaves by maceration or steam distillation process, which has antibacterial and insect-repellent activities. However, the use of CTO is limited and requires modification in other formulations, such as microemulsion (ME), to increase its bioactivities. ME consists of oil, water, surfactant and/or cosurfactant and is commonly applied in food and beverages, cosmetics, and carrier for drug delivery applications. CTO was used as the oil phase for ME with nonionic surfactant and ethanol as a cosurfactant for lowering interfacial tension between oil and water phase. Subsequent observations regarding stability and antibacterial tests were carried out on ME formulations with surfactant/cosurfactant mixture of 2 due to its largest ME area. A hydrodynamic diameter analysis was also carried out to see the stability of the ME within a period of 50 d. ME with 10% CTO, 30% surfactant mixture, and 60% water showed the best formulation observed from the consistent hydrodynamic diameter measurement. In addition, ME with different formulations could inhibit the growth of Escherichia coli and Staphylococcus aureus by more than 90%. From this research, CTO-based ME potentially improve and develop drug carrier applications, especially via topical route.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SDS-Assisted Hydrothermal Growth and Photocatalytic Activity of Like-Caviar MoFe2O4 Nanoparticle Decorated with Al2O3","authors":"Mohammed Ali Hameed, Luma Majeed Ahmed","doi":"10.22146/ijc.88444","DOIUrl":"https://doi.org/10.22146/ijc.88444","url":null,"abstract":"Like-caviar molybdenum ferrite nanoparticles (MoFe2O4 NPs) have been successfully synthesized via a hydrothermal route in the presence of the negative surfactant (sodium dodecyl sulfate (SDS)). SDS acts as a template, stabilizer, and stops the aggregating process through storage. The mean crystal size of MoFe2O4 NPs rises with decorating it with Al2O3. Based on SEM analysis, the shapes of MoFe2O4, Al2O3, and their composite demonstrated like-caviar, like-brain cells, and like-grains, respectively. Al2O3 has been chosen to incorporate with spinel MoFe2O4 to make it color more light, this crucial step is necessary to enhance their optical characteristics. FTIR spectra observed the MoFe2O4 NPs are inverse spinel. The photo-decolorization test employs indigo carmine (IC) as a model pollutant. The quantum yields (Φ) of IC dye decolorization with studied photocatalysts are low, which may be created by quencher materials, dimerization of dye molecules, and photophysical deactivation processes (ISC process). Moreover, the photocatalytic activity of using MoFe2O4 raised after being decorated with alumina, which revealed an increase in the surface acidity, hydroxyl group adsorption, size, band gap, pHpzc of MoFe2O4 from 2.9–3.6 to 4.2–5.9 after decorated alumina. This pH is suitable for decolorizing IC dye, which has a pH of solution equal to 5.3.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}