A. H. Ritonga, Barita Aritonang, Gusliani Eka Putri, K. Khairiah, Enzo Wiranta Battra Siahaan, Debi Meilani
{"title":"含有 LLDPE-g-OA 相容剂的聚乳酸/LLDPE/有机沉淀碳酸钙复合材料:力学、物理、热学和形态学","authors":"A. H. Ritonga, Barita Aritonang, Gusliani Eka Putri, K. Khairiah, Enzo Wiranta Battra Siahaan, Debi Meilani","doi":"10.22146/ijc.86983","DOIUrl":null,"url":null,"abstract":"A plastic composite consisting of polylactic acid (PLA), linear low-density polyethylene (LLDPE), oleic acid-grafted linear low-density polyethylene (LLDPE-g-OA) compatibilizer, and organo-precipitated calcium carbonate (O-PCC) have been successfully made in the molten state. This study aims to characterize the mechanical, physical, thermal, and morphological characteristics of the PLA/LLDPE/O-PCC plastic composite in the presence of an LLDPE-g-OA compatibilizer. The plastic composite was prepared by blending PLA, LLDPE, LLDPE-g-OA, and O-PCC using an internal mixer with a heating of 160 °C and a rotation of 100 rpm. LLDPE and LLDPE-g-OA are put together into the inner mixer chamber until melted, followed by PLA and O-PCC. The most optimum plastic composite composition is PLA/LLDPE/LLDPE-g-g-OA/O-PCC (67.5:22.5:5:5). The mechanical properties showed an increase in tensile strength of 9.78 MPa. The physical properties showed that the minimum water absorption was 0.74%, the biodegradation in humus soil showed a degradation rate of 0.09% per day, and the thermal properties showed better stability with a melting point of 146.5 °C. The FTIR spectrum is similar to the polymer blend without O-PCC. The morphology indicates that the composite is compatible and homogeneous. This semi-biodegradable plastic composite has significant implications for reducing the accumulation of plastic waste in the environment.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLA/LLDPE/Organo-Precipitated Calcium Carbonate Composites Containing LLDPE-g-OA Compatibilizers: Mechanical, Physical, Thermal, and Morphology\",\"authors\":\"A. H. Ritonga, Barita Aritonang, Gusliani Eka Putri, K. Khairiah, Enzo Wiranta Battra Siahaan, Debi Meilani\",\"doi\":\"10.22146/ijc.86983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A plastic composite consisting of polylactic acid (PLA), linear low-density polyethylene (LLDPE), oleic acid-grafted linear low-density polyethylene (LLDPE-g-OA) compatibilizer, and organo-precipitated calcium carbonate (O-PCC) have been successfully made in the molten state. This study aims to characterize the mechanical, physical, thermal, and morphological characteristics of the PLA/LLDPE/O-PCC plastic composite in the presence of an LLDPE-g-OA compatibilizer. The plastic composite was prepared by blending PLA, LLDPE, LLDPE-g-OA, and O-PCC using an internal mixer with a heating of 160 °C and a rotation of 100 rpm. LLDPE and LLDPE-g-OA are put together into the inner mixer chamber until melted, followed by PLA and O-PCC. The most optimum plastic composite composition is PLA/LLDPE/LLDPE-g-g-OA/O-PCC (67.5:22.5:5:5). The mechanical properties showed an increase in tensile strength of 9.78 MPa. The physical properties showed that the minimum water absorption was 0.74%, the biodegradation in humus soil showed a degradation rate of 0.09% per day, and the thermal properties showed better stability with a melting point of 146.5 °C. The FTIR spectrum is similar to the polymer blend without O-PCC. The morphology indicates that the composite is compatible and homogeneous. This semi-biodegradable plastic composite has significant implications for reducing the accumulation of plastic waste in the environment.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.86983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.86983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A plastic composite consisting of polylactic acid (PLA), linear low-density polyethylene (LLDPE), oleic acid-grafted linear low-density polyethylene (LLDPE-g-OA) compatibilizer, and organo-precipitated calcium carbonate (O-PCC) have been successfully made in the molten state. This study aims to characterize the mechanical, physical, thermal, and morphological characteristics of the PLA/LLDPE/O-PCC plastic composite in the presence of an LLDPE-g-OA compatibilizer. The plastic composite was prepared by blending PLA, LLDPE, LLDPE-g-OA, and O-PCC using an internal mixer with a heating of 160 °C and a rotation of 100 rpm. LLDPE and LLDPE-g-OA are put together into the inner mixer chamber until melted, followed by PLA and O-PCC. The most optimum plastic composite composition is PLA/LLDPE/LLDPE-g-g-OA/O-PCC (67.5:22.5:5:5). The mechanical properties showed an increase in tensile strength of 9.78 MPa. The physical properties showed that the minimum water absorption was 0.74%, the biodegradation in humus soil showed a degradation rate of 0.09% per day, and the thermal properties showed better stability with a melting point of 146.5 °C. The FTIR spectrum is similar to the polymer blend without O-PCC. The morphology indicates that the composite is compatible and homogeneous. This semi-biodegradable plastic composite has significant implications for reducing the accumulation of plastic waste in the environment.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.