Indian Journal of Chemical Technology最新文献

筛选
英文 中文
Removal of Chlorpyrifos, Malathion, Dichlorvos and Profenofos by nanocomposite containing AgNP 含AgNP纳米复合材料对毒死蜱、马拉硫磷、敌敌畏和丙威的去除效果
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i3.69433
{"title":"Removal of Chlorpyrifos, Malathion, Dichlorvos and Profenofos by nanocomposite containing AgNP","authors":"","doi":"10.56042/ijct.v30i3.69433","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.69433","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial drug;Carboxy methyl cellulose;Chitosan;Colloidal particles;Drug delivery 抗菌药物;羧甲基纤维素;壳聚糖;胶体颗粒;给药
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i3.70107
{"title":"Antibacterial drug;Carboxy methyl cellulose;Chitosan;Colloidal particles;Drug delivery","authors":"","doi":"10.56042/ijct.v30i3.70107","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.70107","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green carbon dots from poppy seeds with conjugated hydrogel hybrid films for detection of Fe3+ 结合水凝胶杂化膜的罂粟籽绿色碳点检测Fe3+
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i1.64785
{"title":"Green carbon dots from poppy seeds with conjugated hydrogel hybrid films for detection of Fe3+","authors":"","doi":"10.56042/ijct.v30i1.64785","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.64785","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methyl orange adsorption by modified montmorillonite nanomaterials: Characterization, kinetic, isotherms and thermodynamic studies 改性蒙脱土纳米材料对甲基橙的吸附:表征、动力学、等温线和热力学研究
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i1.65960
{"title":"Methyl orange adsorption by modified montmorillonite nanomaterials: Characterization, kinetic, isotherms and thermodynamic studies","authors":"","doi":"10.56042/ijct.v30i1.65960","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.65960","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis, characterization and application of Lignosulphonate-g- poly(sodium acrylate) hydrogel 木质素磺酸-聚丙烯酸钠水凝胶的合成、表征及应用
4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i6.1325
{"title":"Synthesis, characterization and application of Lignosulphonate-g- poly(sodium acrylate) hydrogel","authors":"","doi":"10.56042/ijct.v30i6.1325","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.1325","url":null,"abstract":"Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of methylene blue dye from aqueous media by adsorption using nickel oxide modified montmorillonite composite 氧化镍改性蒙脱土复合材料吸附去除水中亚甲基蓝染料
4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i6.6546
{"title":"Removal of methylene blue dye from aqueous media by adsorption using nickel oxide modified montmorillonite composite","authors":"","doi":"10.56042/ijct.v30i6.6546","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.6546","url":null,"abstract":"In this study, the adsorptive removal of methylene blue (MB) from aqueous solutions onto nickel oxide (NiO) modified montmorillonite (NiO-Mt) has been studied and compared with that of commercial bentonite. The influences of various experimental factors such as contact time, adsorbent dosage, pH of solution, initial dye concentration and temperature have been investigated. Batch adsorption studies has manifested that the maximum adsorption capacity of MB is around 99.9 mg/g in 10 min with 25 mg adsorbent mass at an initial concentration of 100 mg/L at ambient temperature of 25°C and natural pH of solution (pH = 5.8 for NiO-Mt and pH = 6.3 for commercial bentonite). The adsorption kinetics and isotherms are well fitted by pseudo-second order and Langmuir models, respectively. The thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy are determined. The MB adsorption is physical, spontaneous and exothermic for both adsorbents.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"105 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed convection flow over non-Darcy porous stretching/shrinking sheet 非达西多孔拉伸/收缩板上的混合对流流
4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i6.487
{"title":"Mixed convection flow over non-Darcy porous stretching/shrinking sheet","authors":"","doi":"10.56042/ijct.v30i6.487","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.487","url":null,"abstract":"An investigation has been carried out on heat and mass transport phenomena for mixed-convection flow over a vertically non-Darcy Forchheimer porous stretching/shrinking sheet considering the Soret - Dufour effects. With consideration of the appropriate similarity framework, the fundamental governing flow equations are converted into a system of non-dimensional equations. The bvp4c, a built-in solver of MATLAB software, is utilized to compute the numerical results of the flow problem. The present model is validated with previously published literature. The impacts of several related flow parameters on velocity, temperature, and concentration profiles have been displayed graphically. Also, the mass and heat transfer rates along with the coefficients of skin friction are calculated and discussed numerically. It is found that an increment in the thermal radiation parameter increases the fluid temperature, and the concentration gradient boosts up for the enhancement of the Soret number.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amalgamation of copper nanoparticles of assorted size using Nelumbo nucifera (lotus) leaf and its bioelectrical assay 不同大小的铜纳米颗粒在荷叶中的融合及其生物电学分析
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i3.69307
R. J. Blessikha, C. Raj
{"title":"Amalgamation of copper nanoparticles of assorted size using Nelumbo nucifera (lotus) leaf and its bioelectrical assay","authors":"R. J. Blessikha, C. Raj","doi":"10.56042/ijct.v30i3.69307","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.69307","url":null,"abstract":"There are several potential uses for green nanoparticle amalgamated in the medicinal and environmental sciences. Green synthesis specifically tries to reduce the use of harmful chemicals. For instance, it is often acceptable to employ organic resources like plants. In a single green synthesis step, biomolecules found in plant extract may transform metal ions into nanoparticles. This naturally occurring conversion of a metal ion to a base metal may be carried out quickly, conveniently, and at ambient temperature and pressure. In the current study, the production of CuNPs utilizing different-sized Nelumbo nucifera leaf extract has been reported. In order to determine how CuNPs generated, several techniques including UV-Visible, XRD, SEM, EDAX, FTIR, and cyclic voltammetry studies were used. The UV-Visible spectra of the amalgamated CuNPs show a peak between 250 and 450 nm. The morphology of CuNPs are spike in shapes with sizes of 33nm for 10mM and 25nm for 50mM, and the nanoparticles are crystalline in nature, according to the XRD and SEM examinations. The amalgamated CuNPs contain 37.55% copper, according to EDAX, and FTIR shows the absorption peak of copper at 1640 and 576 cm -1 .The oxidation and reduction of amalgamated CuNPs are visible by cyclic voltammetry. CuNPs have been put to the test against Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa for their antibacterial properties. CuNPs show the greatest zone of inhibition when used against Pseudomonas aeruginosa . Aspergillus flavus and Candida albicans have been used as test subjects for the antifungal testing of CuNPs. The CuNPs against Candida albicans show the largest zone of inhibition. CuNPs demonstrate strong antibacterial and antifungal efficacy, which means they have a considerable potential for application in the development of medications used to treat bacterial and fungal infections. The electrical potential difference of amalgamated CuNPs has been measured using a voltmeter and it is found that as concentration rises, so does the electrical potential difference.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxymethylated gum tragacanth crosslinked poly(sodium acrylate)hydrogel: Fabrication, characterization, rheology and drug-delivery application 羧甲基化黄歌胶交联聚丙烯酸钠水凝胶:制备、表征、流变学和给药应用
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i3.70100
{"title":"Carboxymethylated gum tragacanth crosslinked poly(sodium acrylate)hydrogel: Fabrication, characterization, rheology and drug-delivery application","authors":"","doi":"10.56042/ijct.v30i3.70100","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.70100","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation and microbial activity of neem oil nano-emulsions formulated by phase inversion temperature method 相变温度法制备印楝油纳米乳的表征及微生物活性
IF 0.5 4区 工程技术
Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i1.61853
{"title":"Characterisation and microbial activity of neem oil nano-emulsions formulated by phase inversion temperature method","authors":"","doi":"10.56042/ijct.v30i1.61853","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.61853","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信