{"title":"Leakage and Dynamic Force Coefficients of a Pocket Damper Seal Operating Under a Wet Gas Condition: Tests vs. Predictions","authors":"Jing Yang, L. San Andrés, Xueliang Lu","doi":"10.1115/gt2019-90331","DOIUrl":"https://doi.org/10.1115/gt2019-90331","url":null,"abstract":"\u0000 High performance centrifugal compressors presently favor pocket damper seals (PDSs) as a choice of secondary flow control element offering a large effective damping coefficient to mitigate rotor sub synchronous whirl motions. Current and upcoming multiple-phase compression systems in subsea production facilities must demonstrate long term operation and continuous availability, free of harmful rotor instabilities. Plain annular seals and labyrinth seals are notoriously bad choices, whereas a PDS, by stopping the circulation of trapped liquid, operates stably. This paper presents experimental and computational fluid dynamics (CFD) results for the leakage and dynamic force coefficients obtained in a dedicated test facility hosting a fully partitioned PDS, four ribbed and with eight pockets per cavity. The test PDS, operating at a rotor speed 5,250 rpm (surface speed 35 m/s) and under a supply pressure/discharge pressure ratio up to 3.2, is supplied with a mixture of air and ISO VG 10 oil whose maximum liquid volume fraction (LVF) is 2.2%, equivalent to a liquid mass fraction of 84%. When supplied with just air (dry condition), the measured leakage increases nonlinearly with supply pressure. Under a wet gas condition, the recorded mass flow increases on account of the large difference in density between the liquid and the gas. CFD derived mass flow rates for both dry and wet gas conditions agree with the measured ones. The test dry gas PDS produces a direct dynamic stiffness (HR) increasing with frequency whereas the direct damping (C) and cross-coupled dynamic stiffness (hR) coefficients remain relatively constant. The CFD predicted damping agrees best with the test C albeit over predicting HR at low excitation frequencies and hR at all frequencies (< 175 Hz ∼ twice rotor speed). Under a wet gas condition with LVF = 0.4%, the test force coefficients show great variability over the excitation frequency range; in particular HR < 0, though growing with frequency due to the large liquid mass fraction. The CFD predictions, on the other hand, produce a dynamic direct stiffness HR > 0 for all frequencies. Both experimental hR and C for the wet gas PDS are larger than their counterparts for the dry gas seal. The CFD predicted C and hR, wet vs. dry, show a modest growth, yet remaining lower than the test data. The CFD derived flow field for a wet gas condition shows the seal radial partition walls (ridges) reduce the circumferential flow velocity and liquid accumulation within a pocket. Both the test data and CFD prediction show that the magnitude of the flexibility function for the PDS test system reduces when the two component mixture flows through the seal, hence revealing the additional effective damping, more pronounced for the test data rather than that from the predictions. Further work, experimental and CFD based, will continue to advance the technology of wet gas seals while bridging the gap between test data and computational physics model simula","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131206634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement and Analysis for a Gaseous Cavitation Model Applied in a Tilting-Pad Journal Bearing","authors":"A. Ding, Xuesong Li, Yuhong Li","doi":"10.1115/gt2019-90626","DOIUrl":"https://doi.org/10.1115/gt2019-90626","url":null,"abstract":"\u0000 Considering the gaseous cavitation rate is influenced by local pressure, a transient gaseous cavitation model is developed from an equilibrium gaseous cavitation model in consideration of transient gaseous cavitation theories and the Bunsen solubility. With the shear stress transport (SST) model with low-Re correction and air backflow from the bearing outlets, the transient gaseous cavitation model is applied to the three-dimensional simulations of an entire tilting-pad journal bearing at 3000 rpm speed and under 180 kN load. The simulated bearing pressure and load are in good agreement with the experimental data, indicating that the transient gaseous cavitation model performs well in the bearing simulations. Based on the comparisons of the simulated air and dissolved air distributions between the transient and equilibrium gaseous cavitation models, the simulated cavitation process of the transient gaseous cavitation is proved to be not in equilibrium and mass transfer occur between the backflow air and oil. The purpose of building the transient gaseous cavitation model is thus met. Analyses of the air distributions indicate that high cavitation rates and low dissolution rates makes air volume a major part of the total air volume and close to the physical gaseous cavitation process.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114942063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Axisymmetric Flows and Rotordynamic Forces in an Eccentric Shrouded Centrifugal Compressor: Part 2 — Analysis","authors":"Jieun Song, S. Song","doi":"10.1115/gt2019-90669","DOIUrl":"https://doi.org/10.1115/gt2019-90669","url":null,"abstract":"\u0000 An integrated analytical model to predict non-axisymmetric flow fields and rotordynamic forces in a shrouded centrifugal compressor has been newly developed and validated. The model is composed of coupled, conservation law-based, bulk-flow sub-models, and the model takes into account the flow coupling among the blades, labyrinth seals, and shroud cavity. Thus, the model predicts the entire flow field in the shrouded compressor when given compressor geometry, operating conditions, and eccentricity. When compared against the experimental data from Part 1, the new model accurately predicts the evolution of the pressure perturbations along the shroud and labyrinth seal cavities as well as the corresponding rotordynamic stiffness coefficients. For the test compressor, the cross stiffness rotordynamic excitation is positive — the contribution of the shroud is the highest; the contribution of the seals is less than but on the same order of magnitude as that of the shroud; and contribution of impeller blades is insignificant. For accurate flow and rotordynamic force predictions, it is critical to model the coupling among the components (e.g., impeller, shroud, labyrinth seal, etc.) which determines the non-axisymmetric boundary conditions for the components. The new model also enables insight into the physical mechanism for pressure perturbation development. The labyrinth seal pressure distribution becomes non-axisymmetric to satisfy mass conservation in the seal cavity, and this non-axisymmetry, in turn, serves as the influential boundary condition for the pressure distribution in the shroud cavity.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125730343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason C. Wilkes, N. Smith, B. Venkataraman, M. Vagani, Sara Goucher
{"title":"Experimentally Measured Effectiveness of Different Shroud Swirl Brake Profiles in a Centrifugal Compressor","authors":"Jason C. Wilkes, N. Smith, B. Venkataraman, M. Vagani, Sara Goucher","doi":"10.1115/gt2019-91676","DOIUrl":"https://doi.org/10.1115/gt2019-91676","url":null,"abstract":"\u0000 As centrifugal compressors are pushed to operate at higher pressures and higher power levels, destabilizing gas forces often increase the challenge of designing a stable rotordynamic system. While technical innovations like damper seals, swirl brakes, and damper bearings that help stabilize compressors are numerous, predicting the impact that these improvements will have on a specific system is somewhat of an art form. To this end, researchers are constantly improving the depth of knowledge on these features so that the impact of these improvements is well defined. In the current work, the authors experimentally measured the impact of different swirl brake/vane concepts on the flow characteristics of a centrifugal compressor shroud cavity. The eye seal configuration studied here is a tooth on rotor labyrinth eye seal.\u0000 The different shroud swirl vane geometries considered consist of various castellated features, each having the intent to reduce swirl velocity in the shroud cavity prior to entering the seal. The purpose of the testing was to determine whether a significant reduction in swirl velocity entering or exiting the seal could be measured with the different anti-swirl vane profiles over a conventional shroud cavity that was tested with the same setup. The metrics that determine the effectiveness of the swirl brake were based on upstream and downstream measurements of swirl velocity using pitot-probes at different depths in the shroud cavity, and measurements of seal exit angle and velocity using a traversing cobra-probe.\u0000 The test data presented herein show definitively that the different swirl brake designs, including a slotted seal, a long vane, and a short vane, have a major impact on swirl velocities relative to the conventional shroud design. The most effective at reducing swirl entering/leaving the seal is the slotted seal, while the concepts employing shroud vanes were more effective at reducing swirl in the shroud cavity.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123243114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jieun Song, Suyong Kim, T. Park, B. Cha, Dong Hun Lim, J. Hong, Tae Wook Lee, S. Song
{"title":"Non-Axisymmetric Flows and Rotordynamic Forces in an Eccentric Shrouded Centrifugal Compressor: Part 1 — Measurement","authors":"Jieun Song, Suyong Kim, T. Park, B. Cha, Dong Hun Lim, J. Hong, Tae Wook Lee, S. Song","doi":"10.1115/gt2019-90237","DOIUrl":"https://doi.org/10.1115/gt2019-90237","url":null,"abstract":"\u0000 Centrifugal compressors can suffer from rotordynamic instability. While individual components (e.g., seals, shrouds) have been previously investigated, an integrated experimental or analytical study at the compressor system level is scarce. For the first time, non-axisymmetric pressure distributions in a statically eccentric shrouded centrifugal compressor with eye-labyrinth seals have been measured for various eccentricities. From the pressure measurements, direct and cross-coupled stiffness coefficients in the shrouded centrifugal compressor have been determined. Thus, the contributions of the pressure perturbations in the shroud cavity and labyrinth seals have been simultaneously investigated. The cross-coupled stiffness coefficients in the shroud and labyrinth seals are both positive and one order of magnitude larger than the direct stiffness coefficients. Furthermore, in the tested compressor, contrary to the common assumption, the cross-coupled stiffness in the shroud is 2.5 times larger than that in the labyrinth seals. Thus, the shroud contributes more to rotordynamic instability than the eye-labyrinth seals.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124852953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Investigations on the Static and Rotordynamic Characteristics of Hole-Pattern Seals With Annular or Pocket Grooves on Seal Stator","authors":"Z. Fang, Zhigang Li, Jun Li, Z. Feng","doi":"10.1115/gt2019-90776","DOIUrl":"https://doi.org/10.1115/gt2019-90776","url":null,"abstract":"\u0000 Annular damper seals, such as hole-pattern seals, are widely used to control leakage and enhance rotordynamic stability in turbomachinery, especially for the balance-piston seal in the straight-through compressor, and the center seal in the back-to-back compressor. To avoid or minimize negative static stiffness, annular grooves on seal stator have been used to increase direct static stiffness of hole-pattern seals by dividing one long seal to several shorter seal sections. However, few literatures are available for understanding the influences of annular grooves on seal static and rotordynamic characteristics.\u0000 To understand the comprehensive effects of grooves on the static and rotordynamic characteristics of annular seals, a proposed three-dimensional (3D) transient CFD-based method was used for predictions of rotordynamic characteristics of hole-pattern seals, based on the multi-frequency one-dimensional rotor oscillating model and mesh deformation technique. Moreover, a 3D steady CFD-based method based on the mesh deformation technique was also utilized to predict static characteristics of hole-pattern seals. The accuracy and reliability of the present transient CFD-based method were demonstrated with experimental data of frequency-dependent rotordynamic coefficients of an experimental hole-pattern seal (HPS) at three inlet preswirl conditions (μ0 = −0.2441, 0, 0.598). The leakage flow rates, static and rotordynamic force coefficients were computed for three types of HPS (one without grooves - HPS, one with annular grooves on stator - HPS-AG, and one with pocket grooves on stator – HPS-PG) with three axial locations of grooves (20%, 40%, 60% of seal axial length) at zero and positive inlet preswirl conditions. The effects of groove types (annular and pocket grooves) and groove locations on the static and rotordynamic coefficients of HPS were numerically discussed.\u0000 Numerical results show that the annular groove and pocket groove on the seal stator both produce a significantly increase in static stiffness, and the HPS-PG seal possesses relatively optimal static stiffness. The annular groove and pocket groove both result in slight increase (less than 5%) in leakage flow rate. The annular groove will significantly weaken the seal dynamic stiffness capability but weakly influence the seal net damping capability. However, the pocket groove shows weakly influences on the dynamic stiffness and damping characteristics. This suggests that the pocket groove is a more suitable design to improve the static and rotordynamic characteristic. The rotordynamic force coefficients show strong dependence on the annular groove location for the HPS-AG seal, but are insensitive to the pocket groove location for the HPS-PG seal. The optimal location of annular groove is strongly related to the inlet preswirl conditions. The increasing swirl velocity induced by the annular groove results in the decrease in stiffness and damping of the HPS-AG seal.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130156559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Comparison of Static and Rotordynamic Characteristics for a Grooved-Stator/Smooth-Rotor and a Smooth-Stator/Grooved-Rotor Liquid Annular Seals","authors":"Zhigang Li, Z. Fang, Jun Li, Z. Feng","doi":"10.1115/gt2019-90781","DOIUrl":"https://doi.org/10.1115/gt2019-90781","url":null,"abstract":"\u0000 Liquid annular seals with parallelly-grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly-grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor-stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly-grooved liquid annular seals, which are limited in the literature.\u0000 Numerical results of leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient CFD-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number and geometry. The present transient CFD-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, 8.27 bar), three rotational speeds (2 krpm, 4 krpm, 6 krpm) and three inlet preswirl ratios (0, 0.5, 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼ 2–10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y.\u0000 For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GS-SR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130206800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Integration of Hot Foil Bearings Into Gas Turbine Engines: Theoretical Treatment","authors":"H. Heshmat, J. Walton","doi":"10.1115/gt2019-91710","DOIUrl":"https://doi.org/10.1115/gt2019-91710","url":null,"abstract":"\u0000 To achieve high power density Gas Turbine Engines (GTEs), R&D efforts have strived to develop machines that spin faster and run hotter. One method to achieve that goal is to use high temperature capable foil bearings. In order to successfully integrate these advanced foil bearings into GTE systems, a theoretical understanding of both bearing and rotor system integration is essential. Without a fundamental understanding and sound theoretical modeling of the foil bearing coupled with the rotating system such an approach would prove application efforts fruitless. It is hoped that the information provided in this paper will open up opportunistic doors to designs presently thought to be impossible.\u0000 In this paper an attempt is made to describe how an advanced foil bearing is modeled for extreme high temperature operation in high performance turbomachinery including GTEs, Supercritical CO2 turbine generators and others. The authors present the advances in foil bearing capabilities that were crucial to achieving high temperature operation. Achieving high performance in a compliant foil bearing under the wide extremes of operating temperatures, pressures and speeds, requires a bearing system design approach that accounts for the highly interrelated compliant surface foil bearing elements such as: the structural stiffness and frictional characteristics of the underlying compliant support structure across the operating temperature and pressure spectrum; and the coupled interaction of the structural elements with the hydrodynamic pressure generation. This coupled elasto-hydrodynamic-Finite Element highly non-linear iterative methodology will be used by the authors to present a series of foil bearing design evaluations analyzing and modeling the foil bearing under extreme conditions. The complexity of the problem of achieving foil bearing system operation beyond 870°C (1600°F) requires as a prerequisite the attention to the tribological details of the foil bearing. For example, it is necessary to establish how both the frictional and viscous damping coefficient elements as well as the structural and hydrodynamic stiffness are to be combined. By combining these characteristics the influence of frictional coefficients of the elastic and an-elastic materials on bearing structural stiffness and hence the bearing effective coupled elasto-hydrodynamic stiffness coefficients will be shown.\u0000 Given that the bearing dynamic parameters — stiffness and damping coefficients — play a major role in the control of system dynamics, the design approach to successfully integrate compliant foil bearings into complex rotating machinery systems operating in extreme environments is explored by investigating the effects of these types of conditions on rotor-bearing system dynamics. The proposed rotor/bearing model is presented to describe how system dynamics and bearing structural properties and operating characteristics are inextricably linked together in a manner that results i","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127763435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph A. Beck, Jeffrey M. Brown, A. Kaszynski, Emily B. Carper, Daniel L. Gillaugh
{"title":"Geometric Mistuning Reduced Order Model Development Utilizing Bayesian Surrogate Models for Component Mode Calculations","authors":"Joseph A. Beck, Jeffrey M. Brown, A. Kaszynski, Emily B. Carper, Daniel L. Gillaugh","doi":"10.1115/gt2019-90923","DOIUrl":"https://doi.org/10.1115/gt2019-90923","url":null,"abstract":"\u0000 By design, Integrally Bladed Rotors (IBRs) are meant to be tuned, rotationally periodic structures. However, unique variations in geometries and material properties from sector-to-sector, referred to as mistuning, destroy the structural periodicity. This results in mode localization that can induce forced response levels greater than what is predicted with a tuned-structure analysis. Furthermore, mistuning and mode localization are random processes that require stochastic treatments when analyzing the distribution of fleet responses. Generating this distribution can be computationally intensive when using the full finite element model. To overcome this expense, Reduced Order Models (ROMs) have been developed to accommodate fast calculations of mistuned forced response levels for a fleet of random IBRs. Usually, ROMs can be classified by two main families: frequency-based and geometry-based methods. Frequency-based ROMs assume mode shapes do not change due to mistuning. However, this assumption has been shown to cause errors that propagate to the fleet distribution. To circumvent these errors, geometry-based ROMs have been developed to provide accurate predictions. However, these methods require recalculating modal data during ROM formulations. This increases the computational expense in computing fleet distributions. A new geometry-based ROM is presented to reduce this cost. The developed ROM utilizes a Bayesian surrogate model in place of sector modal calculations required in ROM formulations. This method, referred to as the Surrogate Modal Analysis for Geometry Mistuning Assessments (SMAGMA), will propagate the uncertainties of the surrogate prediction to the forced response. Assessments of the ROM accuracy are made by comparing results to the true forced response levels and results computed by a frequency-based ROM.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130936878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason C. Wilkes, R. Cater, E. Swanson, K. Passmore, J. Brady
{"title":"The Influence of Ambient Pressure on the Measured Load Capacity of Bump-Foil and Spiral-Groove Gas Thrust Bearings at Ambient Pressures up to 69 Bar on a Novel High-Pressure Gas Bearing Test Rig","authors":"Jason C. Wilkes, R. Cater, E. Swanson, K. Passmore, J. Brady","doi":"10.1115/gt2019-91735","DOIUrl":"https://doi.org/10.1115/gt2019-91735","url":null,"abstract":"\u0000 This paper will show the influence of ambient pressure on the thrust capacity of bump-foil and spiral-groove gas thrust bearings. The bearings were operating in nitrogen at various pressures up to 69 bar, and were tested to failure. Failure was detected at various pressures by incrementally increasing the thrust load applied to the thrust bearing until the bearing was no longer thermally stable, or until contact was observed by a temperature spike measured by thermocouples within the bearing.\u0000 These tests were performed on a novel thrust bearing test rig that was developed to allow thrust testing at pressures up to 207 bar cavity pressure at 260°C while rotating at speeds up to 120,000 rpm. The test rig floats on hydrostatic air bearings to allow for the direct measurement of applied thrust load through linkages that connect the stationary thrust loader to the rotor housing. Test results on a 65 mm (2.56 in) bump-foil thrust bearing at 100 krpm show a marked increase in load capacity with gas density, which has not previously been shown experimentally. Results also show that the load capacity of a similarly sized spiral-groove thrust bearing are relatively insensitive to pressure, and supported an order-of-magnitude less load than that observed for the bump-foil thrust bearing. These results are compared with analytical predictions, which agree reasonably with the experimental results. Predicted power loss is also presented for the bump-foil bearing; however, measured power loss was substantially higher.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123586267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}