IEEE Microwave and Wireless Components Letters最新文献

筛选
英文 中文
Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band 不同形状对矩形波导测量低损耗材料介电常数的影响
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3177400
Guifeng Yang, Shaohua Zhou, Weijun Liang, Xin Li, Hui Huang, Jianhua Yang
{"title":"Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band","authors":"Guifeng Yang, Shaohua Zhou, Weijun Liang, Xin Li, Hui Huang, Jianhua Yang","doi":"10.1109/LMWC.2022.3177400","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3177400","url":null,"abstract":"To quantify the effect of air gap on the dielectric constant measurement of low-loss materials, this letter presents the first quantitative study of the effect of five different shapes on the dielectric constant measurement using three low-loss materials as examples. The experimental results show that if low-loss materials’ dielectric constant measurement error is controlled within 5%, the air gap cannot exceed 4%. The results of this letter can provide effective guidance and reference for improving the measurement accuracy of electromagnetic parameters of low-loss materials.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1471-1474"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42429450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching 具有紧凑内脊匹配的宽带Ka波段波导Magic-T
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3192891
Song Guo, K. Song, Li Qian, Xinjun Zou
{"title":"A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching","authors":"Song Guo, K. Song, Li Qian, Xinjun Zou","doi":"10.1109/LMWC.2022.3192891","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3192891","url":null,"abstract":"In this letter, a broadband waveguide magic-T with compact size is presented. A grounded suspended stripline has been used to obtain broadband isolation characteristics and increase power capacity. The inner ridge-matching structure is used to achieve broadband matching. The method and design process of the demonstrated magic-T are described in detail. The measured 15-dB bandwidth is about 30.3%, almost for waveguide BJ-320 waveguide operating bandwidth. The measured isolation between sum and deference ports is above 37.5 dB; 20-dB measured isolation is achieved between collinear ports. The measured and simulated results are in good agreement. It has advantages in high-power applications.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"41 1","pages":"1395-1398"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41278342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dual-Band Ultrathin Polarization Converter for S-Band Microwave Transmission 用于S波段微波传输的双频带超薄偏振变换器
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3180677
R. A. Mellita, S. S. Karthikeyan, P. Damodharan
{"title":"Dual-Band Ultrathin Polarization Converter for S-Band Microwave Transmission","authors":"R. A. Mellita, S. S. Karthikeyan, P. Damodharan","doi":"10.1109/LMWC.2022.3180677","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3180677","url":null,"abstract":"In this letter, a low-profile dual-band frequency selective surface (FSS) is designed as a polarizer for satellite communication. This single-layered FSS with a meandered open loop intersected by a metallic strip behaves as a dual sense polarizer. It converts linearly polarized (LP) EM waves of frequency range 2.01–2.64 GHz into left-hand circularly polarized (LHCP) EM waves. Similarly, the LP waves in the frequency range of 3.26–3.68 GHz are converted into right-hand circularly polarized (RHCP) EM waves. The unit cell dimension of the compact polarizer is <inline-formula> <tex-math notation=\"LaTeX\">$0.075lambda _{0} times 0.075lambda _{0} times 0.005lambda _{0}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation=\"LaTeX\">$lambda _{0}$ </tex-math></inline-formula> stands for free space wavelength at the lowest cut-off frequency. This study explores the structural design evolution of the proposed polarizer and verifies the frequency behavior of the structure using a circuit model. The simulated performance of the dual-band polarizer is experimentally tested. Good concordance is observed between the simulated and measured results.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1467-1470"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43960659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Broadband Rectifier With Wide Incident Angle of Incoming Waves Based on Quadrature Coupler for RF Energy Harvesting 基于正交耦合器的宽入射角宽带射频能量采集整流器
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3192835
Jian Liu, M. Zhang, Shuangqi Cai, Jia Chen
{"title":"A Broadband Rectifier With Wide Incident Angle of Incoming Waves Based on Quadrature Coupler for RF Energy Harvesting","authors":"Jian Liu, M. Zhang, Shuangqi Cai, Jia Chen","doi":"10.1109/LMWC.2022.3192835","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3192835","url":null,"abstract":"In this letter, a broadband rectifier with a wide-incident-angle (WIA) property is proposed. The circuit is composed of a broadband quadrature coupler (BQC) and two broadband subrectifiers (RectA and RectB). Here, RectA and RectB are connected to the two output ports of the BQC and combined by a direct current (dc) power combiner. Then, the obtained dc power is transmitted to the load resistor. Besides, two RF sources (RF1 and RF2) with identical input power and a phase difference (<inline-formula> <tex-math notation=\"LaTeX\">$Delta varphi$ </tex-math></inline-formula>) are connected to the input and isolated ports of the BQC. A detailed theoretical analysis is carried out. To validate the proposed scheme, we design a broadband (1.6–2.8 GHz) WIA rectifier. Measurement results show that the power conversion efficiency (PCE) exceeded 60% in the frequency range from 1.6 to 2.8 GHz at 13.1 dBm of the input power. Additionally, at 2.45 GHz, the PCE varies in the range of 60.8% and 72.6% within the entire <inline-formula> <tex-math notation=\"LaTeX\">$Delta varphi $ </tex-math></inline-formula> range (0°–360°). Thus, the obtained PCE variation (<inline-formula> <tex-math notation=\"LaTeX\">$Delta eta$ </tex-math></inline-formula>) is 11.8%. Considering its excellent broadband and WIA features, it is very suitable for high-efficiency radio-frequency (RF) energy harvesting (RFEH) systems.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1483-1486"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45489919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High PAE CMOS Power Amplifier With 44.4% FBW Using Superimposed Dual-Band Configuration and DGS Inductors 使用叠加双频带配置和DGS电感器的44.4%FBW的高PAE CMOS功率放大器
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3189347
Omar Z. Alngar, A. Barakat, R. Pokharel
{"title":"High PAE CMOS Power Amplifier With 44.4% FBW Using Superimposed Dual-Band Configuration and DGS Inductors","authors":"Omar Z. Alngar, A. Barakat, R. Pokharel","doi":"10.1109/LMWC.2022.3189347","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3189347","url":null,"abstract":"A two-stage 180-nm CMOS wideband (14–22 GHz) power amplifier (PA) with a superimposed staggered technique and defected-ground-structure (DGS) inductors is introduced, where a wideband peaking main stage is designed at the center frequency; then, a superimposed dual-band (SDB) driver stage is proposed to obtain the optimally flat gain response over the whole bandwidth (BW). Also, DGS inductors are used to enhance the power added efficiency (PAE) of the implemented PA by decreasing the matching circuits’ insertion losses. The proposed PA achieved a power gain of 12 dB at a total chip area of 0.564 mm2. Also, at the center frequency, it achieved a saturated output power of 16.6 dBm exhibiting the smallest reported amplitude-to-phase (AM-PM) distortion (2.1°) and group delay (GD) variations (±66 ps). Finally, it gives among the highest fractional bandwidth (FBW) (44.4%) and the PAE (18.7%) so far. Also, it achieves an error vector magnitude of −25 dB at 9.3-dBm output power for a 400-MHz 5G-NR signal.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1423-1426"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45884199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An Artificial Intelligence Assisted Distance Variation Robust Microwave Sensor for Biofuel Analysis Applications 一种用于生物燃料分析的人工智能辅助距离变化鲁棒微波传感器
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3177403
A. Moradkhani, Omid Hasannejad, M. Baghelani
{"title":"An Artificial Intelligence Assisted Distance Variation Robust Microwave Sensor for Biofuel Analysis Applications","authors":"A. Moradkhani, Omid Hasannejad, M. Baghelani","doi":"10.1109/LMWC.2022.3177403","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3177403","url":null,"abstract":"This letter presents a novel method for distance variation robustness enhancement of microwave resonator-based sensor using artificial intelligence. Since any small change in the distance of the material under the test to the microwave resonator sensors results in significant shifts in their resonance frequency, the performance of these sensors is very susceptible to movements of the measuring system. By utilizing multiple features of the wideband spectrum of the resonators including the frequency, amplitude, and the quality factor of two resonance harmonics of a microwave resonator, a multilayer perceptron (MLP) neural network is trained to measure the volumetric concentrations of biofuel liquids in various liquid to resonator distances. The average errors of as small as 2% for both gasoline and ethanol are measured over a distance variation of as large as from 1 to 6 mm for the liquid under the test from the resonator.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1475-1478"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47073845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidically Reconfigurable mm-Wave Slow Wave Phase Shifter With Integrated Actuation 集成驱动的微流体可重构毫米波慢波移相器
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3193693
J. Mendoza, G. Mumcu
{"title":"Microfluidically Reconfigurable mm-Wave Slow Wave Phase Shifter With Integrated Actuation","authors":"J. Mendoza, G. Mumcu","doi":"10.1109/LMWC.2022.3193693","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3193693","url":null,"abstract":"A microfluidically reconfigurable slow wave phase shifter (MRPS) with integrated actuation is introduced. MRPS is based on a selectively metalized plate (SMP) repositionable within a microfluidic channel placed in close proximity to a microstrip line. SMP repositioning creates a variable capacitive loading to alter the speed of the propagating wave. The device exhibits < 2 dB insertion loss (IL) and a reconfiguration time of 50 ms. The <inline-formula> <tex-math notation=\"LaTeX\">$|S_{21}|$ </tex-math></inline-formula>, <inline-formula> <tex-math notation=\"LaTeX\">$|S_{11}|$ </tex-math></inline-formula>, and phase performances are characterized to be stable with respect to gravity by no more than 0.16 dB, 3.02 dB, and 7.73° variations, respectively. Vibration test shows 0.08 dB in IL, 1.72 dB in return loss (RL), and 4.23° in phase variations. The device is expected to handle 5.2 W of continuous RF power.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1415-1418"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44037238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient Magnetic Resonance SIMO WPT Insensitive to Load Impedance at Short Distances 高效磁共振SIMO WPT在短距离对负载阻抗不敏感
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3187609
B. Choi, Jeong‐Hae Lee
{"title":"Efficient Magnetic Resonance SIMO WPT Insensitive to Load Impedance at Short Distances","authors":"B. Choi, Jeong‐Hae Lee","doi":"10.1109/LMWC.2022.3187609","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3187609","url":null,"abstract":"In general, it is known that magnetic induction (MI) wireless power transfer (WPT) is used at a short distance (~several millimeters) and magnetic resonance (MR) WPT is applied at a longer distance (more than several tens of centimeters). In this letter, it is shown that the MR coil can be robustly designed to have higher efficiency, even when the load impedance changes significantly at short distances. The simulated power transfer efficiencies of MI and MR coil show that the MR coil was more insensitive to load impedance than the MI coil. A 1:4 single input and multiple output (SIMO) MR coil wasdesigned and fabricated. Its performance with the variation of load impedance was verified through measurement.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1463-1466"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cylindrical Magnetically Coupled Resonant Wireless Power Transfer System Based on Flexible PCB Coils 基于柔性PCB线圈的圆柱形磁耦合谐振无线输电系统
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3181183
Jingjing Li, Shixing Yu, N. Kou, Zhao Ding, Zhengping Zhang
{"title":"Cylindrical Magnetically Coupled Resonant Wireless Power Transfer System Based on Flexible PCB Coils","authors":"Jingjing Li, Shixing Yu, N. Kou, Zhao Ding, Zhengping Zhang","doi":"10.1109/LMWC.2022.3181183","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3181183","url":null,"abstract":"In this letter, we design a magnetically coupled resonant wireless power transfer (MCR-WPT) system on the conformal cylindrical surface based on the flexible printed circuit (FPC) coils. The coil has the advantages of small size, lightweight, and high bendability. We combine mathematics and simulations to explore the relationship between the self-inductance/mutual inductance of the flexible coil and the bending radius of the conformal cylindrical surface. Both theoretical and simulation results show that as the bending radius decreases linearly, the self-inductance and mutual inductance of the coil also decrease nonlinearly. In addition, as the bending radius decreases, the transmission efficiency (TE) decreases, and the resonant frequency shifts to a higher range. Finally, measured and simulated results agree well, which further validates the conclusions.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1479-1482"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45705506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV 基于TSV的三维变压器磁耦合系数精确建模
IF 3 2区 工程技术
IEEE Microwave and Wireless Components Letters Pub Date : 2022-12-01 DOI: 10.1109/LMWC.2022.3195193
Haidong Wu, Gang Dong, Wei Xiong, Chang Zhi, Shen Li, Zhangming Zhu, Yintang Yang
{"title":"Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV","authors":"Haidong Wu, Gang Dong, Wei Xiong, Chang Zhi, Shen Li, Zhangming Zhu, Yintang Yang","doi":"10.1109/LMWC.2022.3195193","DOIUrl":"https://doi.org/10.1109/LMWC.2022.3195193","url":null,"abstract":"This letter presents an accurate magnetic coupling coefficient (<inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula>) model for a through-silicon via (TSV)-based 3-D transformer. The <inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula> factor can be precisely derived from the self-inductance and mutual inductance, which are calculated by various analytical formulas based on physical geometries. The results of this model correspond well with those of Q3D extractor and high-frequency structural simulator (HFSS), with maximum errors of 3.8% and 4.4%, respectively. An equivalent circuit model of a TSV-based transformer is used for further verification. The S-parameters obtained by the circuit model match well with the measurements.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1419-1422"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42412003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信