一种用于生物燃料分析的人工智能辅助距离变化鲁棒微波传感器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Moradkhani, Omid Hasannejad, M. Baghelani
{"title":"一种用于生物燃料分析的人工智能辅助距离变化鲁棒微波传感器","authors":"A. Moradkhani, Omid Hasannejad, M. Baghelani","doi":"10.1109/LMWC.2022.3177403","DOIUrl":null,"url":null,"abstract":"This letter presents a novel method for distance variation robustness enhancement of microwave resonator-based sensor using artificial intelligence. Since any small change in the distance of the material under the test to the microwave resonator sensors results in significant shifts in their resonance frequency, the performance of these sensors is very susceptible to movements of the measuring system. By utilizing multiple features of the wideband spectrum of the resonators including the frequency, amplitude, and the quality factor of two resonance harmonics of a microwave resonator, a multilayer perceptron (MLP) neural network is trained to measure the volumetric concentrations of biofuel liquids in various liquid to resonator distances. The average errors of as small as 2% for both gasoline and ethanol are measured over a distance variation of as large as from 1 to 6 mm for the liquid under the test from the resonator.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1475-1478"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Artificial Intelligence Assisted Distance Variation Robust Microwave Sensor for Biofuel Analysis Applications\",\"authors\":\"A. Moradkhani, Omid Hasannejad, M. Baghelani\",\"doi\":\"10.1109/LMWC.2022.3177403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel method for distance variation robustness enhancement of microwave resonator-based sensor using artificial intelligence. Since any small change in the distance of the material under the test to the microwave resonator sensors results in significant shifts in their resonance frequency, the performance of these sensors is very susceptible to movements of the measuring system. By utilizing multiple features of the wideband spectrum of the resonators including the frequency, amplitude, and the quality factor of two resonance harmonics of a microwave resonator, a multilayer perceptron (MLP) neural network is trained to measure the volumetric concentrations of biofuel liquids in various liquid to resonator distances. The average errors of as small as 2% for both gasoline and ethanol are measured over a distance variation of as large as from 1 to 6 mm for the liquid under the test from the resonator.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1475-1478\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3177403\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3177403","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用人工智能增强基于微波谐振器的传感器距离变化鲁棒性的新方法。由于被测材料到微波谐振器传感器的距离的任何微小变化都会导致其谐振频率的显著变化,因此这些传感器的性能非常容易受到测量系统运动的影响。通过利用谐振器的宽带频谱的多个特征,包括微波谐振器的两个谐振谐波的频率、振幅和质量因子,训练多层感知器(MLP)神经网络来测量各种液体到谐振器距离中生物燃料液体的体积浓度。汽油和乙醇的平均误差都小到2%,是在从谐振器到测试液体的大到1到6mm的距离变化上测量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Intelligence Assisted Distance Variation Robust Microwave Sensor for Biofuel Analysis Applications
This letter presents a novel method for distance variation robustness enhancement of microwave resonator-based sensor using artificial intelligence. Since any small change in the distance of the material under the test to the microwave resonator sensors results in significant shifts in their resonance frequency, the performance of these sensors is very susceptible to movements of the measuring system. By utilizing multiple features of the wideband spectrum of the resonators including the frequency, amplitude, and the quality factor of two resonance harmonics of a microwave resonator, a multilayer perceptron (MLP) neural network is trained to measure the volumetric concentrations of biofuel liquids in various liquid to resonator distances. The average errors of as small as 2% for both gasoline and ethanol are measured over a distance variation of as large as from 1 to 6 mm for the liquid under the test from the resonator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信