IEEE Geoscience and Remote Sensing Letters最新文献

筛选
英文 中文
Modeling of EM Scattering by Composite Surfaces Made of Wake Due to a Submerged Body and Wind-Driven Sea Waves 淹没体尾流和风驱动海浪复合表面的电磁散射建模
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3012164
Hai-Li Zhang, Xingyue Guo, Y. Sha, Xiao-Yang He, M. Xia
{"title":"Modeling of EM Scattering by Composite Surfaces Made of Wake Due to a Submerged Body and Wind-Driven Sea Waves","authors":"Hai-Li Zhang, Xingyue Guo, Y. Sha, Xiao-Yang He, M. Xia","doi":"10.1109/lgrs.2020.3012164","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3012164","url":null,"abstract":"In this letter, an appropriate approach is proposed for modeling the electromagnetic (EM) scattering from composite rough surfaces made up of wake due to a submerged body and wind-driven sea waves. The computational fluid dynamics (CFD) method is used to extract the air–seawater surface wake generated by an underwater moving body at different speeds and depths. Then, the wake is superimposed on the randomly rough wind-driven sea surfaces that obey the Pierson–Moskowitz power spectrum. The small slope approximation (SSA) method is adopted to calculate the EM scattering by the composite surfaces. The simulation results are obtained and justified.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1881-1885"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48674268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An End-to-End Network for Remote Sensing Imagery Semantic Segmentation via Joint Pixel- and Representation-Level Domain Adaptation 基于像素级和表示级域自适应的端到端遥感图像语义分割网络
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3010591
Lukui Shi, Ziyuan Wang, Bin Pan, Zhenwei Shi
{"title":"An End-to-End Network for Remote Sensing Imagery Semantic Segmentation via Joint Pixel- and Representation-Level Domain Adaptation","authors":"Lukui Shi, Ziyuan Wang, Bin Pan, Zhenwei Shi","doi":"10.1109/lgrs.2020.3010591","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3010591","url":null,"abstract":"It requires pixel-by-pixel annotations to obtain sufficient training data in supervised remote sensing image segmentation, which is a quite time-consuming process. In recent years, a series of domain-adaptation methods was developed for image semantic segmentation. In general, these methods are trained on the source domain and then validated on the target domain to avoid labeling new data repeatedly. However, most domain-adaptation algorithms only tried to align the source domain and the target domain in the pixel level or the representation level, while ignored their cooperation. In this letter, we propose an unsupervised domain-adaptation method by Joint Pixel and Representation level Network (JPRNet) alignment. The major novelty of the JPRNet is that it achieves joint domain adaptation in an end-to-end manner, so as to avoid the multisource problem in the remote sensing images. JPRNet is composed of two branches, each of which is a generative-adversarial network (GAN). In one branch, pixel-level domain adaptation is implemented by the style transfer with the Cycle GAN, which could transfer the source domain to a target domain. In the other branch, the representation-level domain adaptation is realized by adversarial learning between the transferred source-domain images and the target-domain images. The experimental results on the public data sets have indicated the effectiveness of the JPRNet.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1896-1900"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010591","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43030005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Adjustment of Measurements With Multiplicative Random Errors and Trends 具有乘法随机误差和趋势的测量平差
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3010827
Yun Shi, Peiliang Xu
{"title":"Adjustment of Measurements With Multiplicative Random Errors and Trends","authors":"Yun Shi, Peiliang Xu","doi":"10.1109/lgrs.2020.3010827","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3010827","url":null,"abstract":"Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1916-1920"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42320227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Disk-Shaped Random Scatterers With Application to Model-Based PolSAR Decomposition 圆盘形随机散射体及其在基于模型的PolSAR分解中的应用
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3011917
Yanting Wang, T. Ainsworth, Jong-Sen Lee
{"title":"Disk-Shaped Random Scatterers With Application to Model-Based PolSAR Decomposition","authors":"Yanting Wang, T. Ainsworth, Jong-Sen Lee","doi":"10.1109/lgrs.2020.3011917","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3011917","url":null,"abstract":"Polarimetric SAR (PolSAR) imagery offers an enhanced capability to reveal the salient scattering properties of scene content. PolSAR-based target decomposition has been widely used to show different apparent scattering mechanisms for various target classes, empowering a direct yet powerful technique for SAR imagery analysis. Among those common targets, modeling the random volume scattering from vegetation is one of the most important. Generally, one models vegetation as a cloud of randomly oriented thin cylinders, mainly intended for twigs and branches. At high radar frequencies, PolSAR imagery shows a strong response from leaves in the vegetation canopy. In this letter, we derive the polarimetric scattering theory for general random volume scatterers, including both thin cylinders and thin disks as limiting cases for leaf response. Adding the proposed random thin disk model explains the observed scattering difference between deciduous forest and coniferous forest, which we then incorporate into a new model-based PolSAR target decomposition scheme.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1961-1965"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011917","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49535856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Identifying and Evaluating the Nighttime Economy in China Using Multisource Data 利用多源数据识别和评价中国夜间经济
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3010936
Yuanzheng Cui, Kaifang Shi, Lei Jiang, Lefeng Qiu, Shaohua Wu
{"title":"Identifying and Evaluating the Nighttime Economy in China Using Multisource Data","authors":"Yuanzheng Cui, Kaifang Shi, Lei Jiang, Lefeng Qiu, Shaohua Wu","doi":"10.1109/lgrs.2020.3010936","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3010936","url":null,"abstract":"The nighttime economy has always been regarded as an important part of the economy. Monitoring and evaluating the nighttime economic level is of great significance for promoting consumption and economic growth and optimizing industrial structure. However, it is difficult to evaluate the nighttime economy in China due to the data being unavailable. Hence, the objective of this study is to identify and evaluate the nighttime economy in China from different perspectives. First, a comprehensive nighttime economic index (CNEI) was constructed by integrating the nighttime light intensity and the points of interest data to represent the nighttime economic level. The CNEI was then verified using the business report data and socioeconomic statistical data. The results show that the CNEI is highly correlated with the verified data. We also found that Shanghai, Chengdu, Guangzhou, and Shenzhen have the highest CNEI values, and the CNEI values of southern cities are generally higher than those of northern cities. This is mainly because the differences in the lifestyles, climatic factors, and cultural customs in the north and south determine the nighttime economic activities. Counties with very high CNEI values are mostly located in the capital cities of each province. The spatial agglomeration at the county level performed more strongly than that at the prefecture level. The study will not only help better understand the nighttime economic level on different scales but also contribute to city-level policymaking on urban planning and economic development.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1906-1910"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47826499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Extension of Image Data Using Generative Adversarial Networks and Application to Identification of Aurora 基于生成对抗网络的图像数据扩展及其在极光识别中的应用
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3012620
Aoi Uchino, M. Matsumoto
{"title":"Extension of Image Data Using Generative Adversarial Networks and Application to Identification of Aurora","authors":"Aoi Uchino, M. Matsumoto","doi":"10.1109/lgrs.2020.3012620","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3012620","url":null,"abstract":"In recent years, automatic auroral image classification has been actively investigated. The baseline method has relied on supervised learning. As this approach requires a large amount of labeled teacher data, it is necessary to collect the data manually and label them, which is a time-consuming task. In this study, we proposed a method to extend an image data set by inputting training images into a deep convolutional generative adversarial network (DCGAN) and generating images in this manner. The proposed approach implied using both generated and original images to train the classifier. It could reduce the number of labeling operations performed manually. As an evaluation experiment, we performed classifier learning on the data sets before and after extension and confirmed that the classification accuracy was improved because of training on the data set after the extension.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1941-1945"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45296006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Filtering Method for ICESat-2 Photon Point Cloud Data Based on Relative Neighboring Relationship and Local Weighted Distance Statistics 基于相对相邻关系和局部加权距离统计的ICESat-2光子点云数据滤波方法
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3011215
Yi Li, Haiqiang Fu, Jianjun Zhu, Changcheng Wang
{"title":"A Filtering Method for ICESat-2 Photon Point Cloud Data Based on Relative Neighboring Relationship and Local Weighted Distance Statistics","authors":"Yi Li, Haiqiang Fu, Jianjun Zhu, Changcheng Wang","doi":"10.1109/lgrs.2020.3011215","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3011215","url":null,"abstract":"The existing local distance statistics-based filtering method for photon point cloud data is greatly affected by the input parameter (number of photon neighbors) and has a poor ability to remove noise photons that are adjacent to signal photons. In this letter, the relative neighboring relationship (RNR) is proposed to describe the relative density distribution of the neighboring photon points around two photon points. The mean local weighted distance is then defined, which is used to enhance the discrimination between the noise photons adjacent to the signal photons and the signal photons. Finally, according to the statistical characteristics of the mean local weighted distance, two strategies for threshold selection are used to separate signal photons from noise photons. ICESat-2 data acquired over tropical forest were used to verify the performance of the proposed method, and the results showed that: 1) the proposed method has a better ability to remove the noise photons adjacent to signal photons and 2) its performance is not greatly dependent on the input parameter.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1891-1895"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46613179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
An Improved Map-Drift Algorithm for Unmanned Aerial Vehicle SAR Imaging 一种改进的无人机SAR成像地图漂移算法
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3011973
Y. Huang, Fei Liu, Zhanye Chen, Jie Li, Wei Hong
{"title":"An Improved Map-Drift Algorithm for Unmanned Aerial Vehicle SAR Imaging","authors":"Y. Huang, Fei Liu, Zhanye Chen, Jie Li, Wei Hong","doi":"10.1109/lgrs.2020.3011973","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3011973","url":null,"abstract":"Unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) is usually sensitive to trajectory deviations that cause severe motion error in the recorded data. Because of the small size of the UAV, it is difficult to carry a high-accuracy inertial navigation system. Therefore, in order to obtain a precise SAR imagery, autofocus algorithms, such as phase gradient autofocus (PGA) method and map-drift (MD) algorithm, were proposed to compensate the motion error based on the received signal, but most of them worked on range-invariant motion error and abundant prominent scatterers. In this letter, an improved MD algorithm is proposed to compensate the range-variant motion error compared to the existed MD algorithm. In this context, in order to solve the outliers caused by homogeneous scenes or absent prominent scatterers, a random sample consensus (RANSAC) algorithm is employed to mitigate the influence resulting from the outliers, realizing robust performance for different cases. Finally, real SAR data are applied to demonstrate the effectiveness of the proposed method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1966-1970"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011973","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43283988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Remote Sensing Image Scene Classification Based on an Enhanced Attention Module 基于增强注意模块的遥感图像场景分类
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3011405
Zhicheng Zhao, Jiaqi Li, Ze Luo, Jian Li, Can Chen
{"title":"Remote Sensing Image Scene Classification Based on an Enhanced Attention Module","authors":"Zhicheng Zhao, Jiaqi Li, Ze Luo, Jian Li, Can Chen","doi":"10.1109/lgrs.2020.3011405","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3011405","url":null,"abstract":"Classifying different satellite remote sensing scenes is a very important subtask in the field of remote sensing image interpretation. With the recent development of convolutional neural networks (CNNs), remote sensing scene classification methods have continued to improve. However, the use of recognition methods based on CNNs is challenging because the background of remote sensing image scenes is complex and many small objects often appear in these scenes. In this letter, to improve the feature extraction and generalization abilities of deep neural networks so that they can learn more discriminative features, an enhanced attention module (EAM) was designed. Our proposed method achieved very competitive performance—94.29% accuracy on NWPU-RESISC45 and state-of-the-art performance on different remote sensing scene recognition data sets. The experimental results show that the proposed method can learn more discriminative features than state-of-the-art methods, and it can effectively improve the accuracy of scene classification for remote sensing images. Our code is available at https://github.com/williamzhao95/Pay-More-Attention.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1926-1930"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45491244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Improved Drone Classification Using Polarimetric Merged-Doppler Images 利用偏振合并多普勒图像改进无人机分类
IF 4.8 3区 地球科学
IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI: 10.1109/lgrs.2020.3011114
B. Kim, Hyunseong Kang, Seongwook Lee, Seong‐Ook Park
{"title":"Improved Drone Classification Using Polarimetric Merged-Doppler Images","authors":"B. Kim, Hyunseong Kang, Seongwook Lee, Seong‐Ook Park","doi":"10.1109/lgrs.2020.3011114","DOIUrl":"https://doi.org/10.1109/lgrs.2020.3011114","url":null,"abstract":"We propose a drone classification method for polarimetric radar, based on convolutional neural network (CNN) and image processing methods. The proposed method improves drone classification accuracy when the micro-Doppler signature is very weak by the aspect angle. To utilize received polarimetric signal, we propose a novel image structure for three-channel image classification CNN. To reduce the size of data from four different polarization while securing high classification accuracy, an image processing method and structure are introduced. The data set is prepared for a three type of drone, with a polarimetric Ku-band frequency modulated continuous wave (FMCW) radar system. Proposed method is tested and verified in an anechoic chamber environment for fast evaluation. A famous CNN structure, GoogLeNet, is used to evaluate the effect of the proposed radar preprocessing. The result showed that the proposed method improved the accuracy from 89.9% to 99.8%, compared with single polarized micro-Doppler image. We compared the result from the proposed method with conventional polarimetric radar image structure and achieved similar accuracy while having half of full polarimetric data.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1946-1950"},"PeriodicalIF":4.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45296531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信