基于生成对抗网络的图像数据扩展及其在极光识别中的应用

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Aoi Uchino, M. Matsumoto
{"title":"基于生成对抗网络的图像数据扩展及其在极光识别中的应用","authors":"Aoi Uchino, M. Matsumoto","doi":"10.1109/lgrs.2020.3012620","DOIUrl":null,"url":null,"abstract":"In recent years, automatic auroral image classification has been actively investigated. The baseline method has relied on supervised learning. As this approach requires a large amount of labeled teacher data, it is necessary to collect the data manually and label them, which is a time-consuming task. In this study, we proposed a method to extend an image data set by inputting training images into a deep convolutional generative adversarial network (DCGAN) and generating images in this manner. The proposed approach implied using both generated and original images to train the classifier. It could reduce the number of labeling operations performed manually. As an evaluation experiment, we performed classifier learning on the data sets before and after extension and confirmed that the classification accuracy was improved because of training on the data set after the extension.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1941-1945"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012620","citationCount":"2","resultStr":"{\"title\":\"Extension of Image Data Using Generative Adversarial Networks and Application to Identification of Aurora\",\"authors\":\"Aoi Uchino, M. Matsumoto\",\"doi\":\"10.1109/lgrs.2020.3012620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, automatic auroral image classification has been actively investigated. The baseline method has relied on supervised learning. As this approach requires a large amount of labeled teacher data, it is necessary to collect the data manually and label them, which is a time-consuming task. In this study, we proposed a method to extend an image data set by inputting training images into a deep convolutional generative adversarial network (DCGAN) and generating images in this manner. The proposed approach implied using both generated and original images to train the classifier. It could reduce the number of labeling operations performed manually. As an evaluation experiment, we performed classifier learning on the data sets before and after extension and confirmed that the classification accuracy was improved because of training on the data set after the extension.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"18 1\",\"pages\":\"1941-1945\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012620\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2020.3012620\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3012620","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

近年来,自动极光图像分类得到了积极的研究。基线方法依赖于监督学习。由于这种方法需要大量标记的教师数据,因此有必要手动收集数据并对其进行标记,这是一项耗时的任务。在这项研究中,我们提出了一种通过将训练图像输入到深度卷积生成对抗性网络(DCGAN)中并以这种方式生成图像来扩展图像数据集的方法。所提出的方法意味着使用生成的图像和原始图像来训练分类器。它可以减少手动执行的标记操作的数量。作为评估实验,我们对扩展前后的数据集进行了分类器学习,并证实了由于对扩展后的数据集的训练,分类精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of Image Data Using Generative Adversarial Networks and Application to Identification of Aurora
In recent years, automatic auroral image classification has been actively investigated. The baseline method has relied on supervised learning. As this approach requires a large amount of labeled teacher data, it is necessary to collect the data manually and label them, which is a time-consuming task. In this study, we proposed a method to extend an image data set by inputting training images into a deep convolutional generative adversarial network (DCGAN) and generating images in this manner. The proposed approach implied using both generated and original images to train the classifier. It could reduce the number of labeling operations performed manually. As an evaluation experiment, we performed classifier learning on the data sets before and after extension and confirmed that the classification accuracy was improved because of training on the data set after the extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信