2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)最新文献

筛选
英文 中文
Field effect passivation of plasma oxidized SiOx layer on boron emitter surface by PECVD 硼发射极表面等离子体氧化SiOx层的场效应钝化
Sehyeon Kim, Kumar Mallem, Sooyoung Park, Sanchari Chowdary, Seyoun Kim, Jinsu Park, Jamein Kim, M. Ju, Youngkuk Kim, E. Cho, Y. Cho, J. Yi
{"title":"Field effect passivation of plasma oxidized SiOx layer on boron emitter surface by PECVD","authors":"Sehyeon Kim, Kumar Mallem, Sooyoung Park, Sanchari Chowdary, Seyoun Kim, Jinsu Park, Jamein Kim, M. Ju, Youngkuk Kim, E. Cho, Y. Cho, J. Yi","doi":"10.23919/AM-FPD.2019.8830592","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830592","url":null,"abstract":"An ultra thin surface passivation layer is essential to reduce the surface recombination and enhance the open circuit voltage for high efficiency crystalline silicon (c-Si) solar cells. In that, we developed charge injection controllable thin films of SiO<inf>X</inf> and SiN<inf>X</inf> layers by PECVD for surface passivation of boron emitter c-Si surface. The refractive index of the SiO<inf>X</inf>/SiN<inf>X</inf> stack was optimized by varying the SiH<inf>4</inf>, NH<inf>3</inf> and N<inf>2</inf>O gas ratios. Lower D<inf>it</inf> of 5 × 10<sup>10</sup> cm<sup>−</sup><sup>2</sup> eV<sup>−</sup><sup>1</sup> and high Q<inf>eff</inf> of −1.71 × 10<sup>11</sup> cm<sup>−</sup><sup>2</sup> was obtained for 10 nm thick SiO<inf>X</inf> layer. The fabricated n-Si bifacial cell with insertion of 10 nm thick SiO<inf>X</inf> layer archived efficiency (η) of 19.48 % with fill factor (FF) of 77.5 %, whereas the cell without SiO<inf>X</inf> layer showed an η of 18.20 % with FF of 75.77.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131161136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Device Structure on the Narrow-band Light Detection of Bulk Heterostructure Organic Photodetectors based on Poly(3-hexylthiophene) and Fullerene Derivative 器件结构对基于聚(3-己基噻吩)和富勒烯衍生物的体异质结构有机光电探测器窄带光探测的影响
Hiyuto Okui, H. Kajii, M. Kondow
{"title":"Effect of Device Structure on the Narrow-band Light Detection of Bulk Heterostructure Organic Photodetectors based on Poly(3-hexylthiophene) and Fullerene Derivative","authors":"Hiyuto Okui, H. Kajii, M. Kondow","doi":"10.23919/AM-FPD.2019.8830565","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830565","url":null,"abstract":"The characteristics of organic photodetectors based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends with various film thicknesses of active layer are investigated. The red-shift in peak wavelength of incident-photon-to-current conversion efficiency (IPCE) spectra in the devices with various film thicknesses is observed with increasing film thickness. For thick devices upon irradiation by light with a photon energy of around energy gap of an active layer, excitons are formed almost uniformly because of the small absorption coefficient of red light. A conventional device with 2 μm-thick film exhibits narrow-band light detection with red-light sensitivity and the relatively narrow spectral response of the full-width at half-maximum (FWMH) of around 50 nm. On the other hand, an inverted device with 2 μm-thick film exhibits broadband light detection. For bulk heterostructure devices, one of important factors to realize the narrowband light detection is the control of charge carrier collection efficiency at electrodes which is attributed to the device structure, including the intrachain transport in polymer.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132137681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance In-Zn-O FET with High On-current and Ultralow (<10−20 A/μm) Off-state Leakage Current for Si CMOS BEOL Application 高性能In-Zn-O场效应管,具有高导通电流和超低(<10−20 A/μm)关断漏电流,用于Si CMOS BEOL应用
N. Saito, T. Sawabe, J. Kataoka, Tomomasa Ueda, T. Tezuka, K. Ikeda
{"title":"High Performance In-Zn-O FET with High On-current and Ultralow (<10−20 A/μm) Off-state Leakage Current for Si CMOS BEOL Application","authors":"N. Saito, T. Sawabe, J. Kataoka, Tomomasa Ueda, T. Tezuka, K. Ikeda","doi":"10.23919/AM-FPD.2019.8830602","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830602","url":null,"abstract":"We have demonstrated and experimentally verified the advantages of In-Zn-O (InZnO) channel compared with In-Ga-Zn-O (InGaZnO) channel for high performance oxide semiconductor channel field effect transistor (FET) with both ultralow off-state leakage current and high on-current. Compared with InGaZnO FET, high mobility (>30 cm2/Vs) and reduction of source/drain (S/D) parasitic resistance by 75% were achieved by InZnO FET. Analysis of a Schottky barrier height at S/D contact and a band offset between oxide semiconductor channel and gate insulator SiO2 revealed that the reduction of S/D parasitic resistance originated from a lowering of conduction band minimum by InZnO channel. Moreover, ultralow (<10−20 A/μm) off-state leakage current characteristics including not only S/D leakage current but also gate leakage current were confirmed to maintain even at thin gate insulator with an equivalent oxide thickness of 6.2 nm.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115436408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automotive Display Trend and Tianma’s Directions 汽车显示趋势与天马方向
Liu Jinquan, Yang Shengjie, Ye Zhou
{"title":"Automotive Display Trend and Tianma’s Directions","authors":"Liu Jinquan, Yang Shengjie, Ye Zhou","doi":"10.23919/AM-FPD.2019.8830619","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830619","url":null,"abstract":"This paper presents the automotive display trends from Tianma point of view and introduces Tianma’s understanding for the trends and directions we will go hopefully that can offer more values to the automotive market which is now at the door of automotive industry’s next transition which includes the application of network, electrical force and autonomous driving etc.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"30 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128649674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Flexible Information and Sensing Devices Fabricated by Printing Process 印刷工艺制造柔性信息与传感器件
K. Kudo, M. Sakai
{"title":"Flexible Information and Sensing Devices Fabricated by Printing Process","authors":"K. Kudo, M. Sakai","doi":"10.23919/AM-FPD.2019.8830615","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830615","url":null,"abstract":"Organic semiconductors make them interesting candidates for the development of innovative and disruptive applications also in large area and flexible sensor devices. In fact, organic-based photoactive media combine effective light absorption in the region of the spectrum from ultraviolet to near-infrared with good photogeneration yield and low-temperature processability over large areas and on any substrate. Moreover, their electronic properties can be easily tuned to optimize, charges transport depending on the targeted application in the field of imaging, tactile or biomedical sensing. We made curved surface sensor array by thermal molding of planer device array on thin plastic film.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"26th 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130174009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correlation between Roll-Off Phenomena and Carrier Injections for OLEDs 有机发光二极管滚落现象与载流子注入的关系
T. Mori, Satoru Aoyama, Yoshiyuki Seike
{"title":"Correlation between Roll-Off Phenomena and Carrier Injections for OLEDs","authors":"T. Mori, Satoru Aoyama, Yoshiyuki Seike","doi":"10.23919/AM-FPD.2019.8830587","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830587","url":null,"abstract":"In organic light-emitting diodes (OLEDs), the roll-off phenomenon was observed in the EL efficiency - current density characteristics. Although the EL efficiency in the inverted OLED with HAT-CN was 1.5–2 times higher than that in the inverted OLED with MoOx, the former maximum EL efficiency was observed in the higher current density. On the other hand, the EL efficiency in the inverted OLEDs decreased rapidly after the maximum as compared with the conventional OLED. The roll-off was thought to depend on carrier injections.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"26th 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131079946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient Planar Perovskite Solar Cells with Entire Low-Temperature Processes via Brookite TiO2 Nanoparticle Electron Transport Layer 通过Brookite TiO2纳米粒子电子传输层实现全低温过程的高效平面钙钛矿太阳能电池
S. Visal, M. Shahiduzzaman, M. Kuniyoshi, T. Kaneko, T. Katsumata, S. Iwamori, K. Tomita, M. Isomura
{"title":"Efficient Planar Perovskite Solar Cells with Entire Low-Temperature Processes via Brookite TiO2 Nanoparticle Electron Transport Layer","authors":"S. Visal, M. Shahiduzzaman, M. Kuniyoshi, T. Kaneko, T. Katsumata, S. Iwamori, K. Tomita, M. Isomura","doi":"10.23919/AM-FPD.2019.8830594","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830594","url":null,"abstract":"Electron transport layer (ETL) is well known as a crucial factor that affects power conversion efficiency (PCE) of perovskite solar cells (PSCs). Low temperature process on ETL has been highly considered for the future of low cost and roll to roll process in mass production of PSCs industrialization. Herein, we demonstrate the low-temperature (<180 °C) processes of pure phase, single crystalline brookite TiO2 nanoparticle (BK TiO2 NPs) layer as an ETL of PSCs, followed by different concentrations of TiCl4 treatment (20mM, 40mM, 60mM and 80mM). By using BK TiO2 NPs with the low temperature process (<180 °C), our device exhibited the highest power conversion efficiency of 15.49% in planar-type PSCs, indicating that the BK TiO2 NPs layer is a new candidate of ETL that can be fabricated in low temperature processes. The optimized TiCl4 concentration is 40mM for the surface treatment of BK TiO2 NPs, which results in the enhancement of PCE, reproducibility and the supression of hysteresis. Probably, the 40mM of TiCl4 treatment improves the interface between the perovskite and BK TiO2 NPs layers and promotes the efficient charge extraction. Thus, the present work is expected to provide an important technology to realize the low-cost planar PSCs produced in entire low-temperature processes.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133904896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PEDOT:PSS Transparent Electrode for ITO-Free Polymer:Fullerene Bulk-Heterojunction Organic Solar Cells PEDOT:PSS透明电极用于无ito聚合物:富勒烯体积异质结有机太阳能电池
Ren-Jie Wu, F. Wu, Leng-Yu Huang, B. Lin, W. Chou, Horng-Long Cheng
{"title":"PEDOT:PSS Transparent Electrode for ITO-Free Polymer:Fullerene Bulk-Heterojunction Organic Solar Cells","authors":"Ren-Jie Wu, F. Wu, Leng-Yu Huang, B. Lin, W. Chou, Horng-Long Cheng","doi":"10.23919/AM-FPD.2019.8830572","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830572","url":null,"abstract":"Conducting poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films have high potential as flexible transparent conductive electrodes in various devices. In this study, two simple robust methanol-based treatment methods, namely, dipping process (DP) and solvent vapor annealing (SVA), were used to improve the electrical conductivity of PEDOT:PSS films in order to make them suitable as electrodes in organic solar cells (OSCs). Then, the characteristics of the methanol-treated PEDOT:PSS films were investigated. After the methanol treatments, the sheet resistance of the PEDOT:PSS films (ca. 100 Ω/Sq) were improved by more than 200 times, and the work function (~5.0 eV) was nearly unchanged in both methods. Two completely different possible origins of the improved conductivity of the methanol-treated PEDOT:PSS films were addressed for DP and SVA approaches. Both methods were suitable for preparing methanol-treated PEDOT:PSS films that can be used as anodes for polymer–fullerene-based OSCs. The photovoltaic performance of the modified PEDOT:PSS-based devices was comparable to that of indium tin oxide (ITO)-based devices, thus demonstrating their practicality. The methanol-treated PEDOT:PSS films show great potential as flexible transparent conductive electrodes for ITO-free and metal-free devices.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124518153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to use Synchrotron Soft X-Ray for Analysis of Perovskite Solar Cell 如何利用同步软x射线分析钙钛矿太阳能电池
S. Ito
{"title":"How to use Synchrotron Soft X-Ray for Analysis of Perovskite Solar Cell","authors":"S. Ito","doi":"10.23919/AM-FPD.2019.8830622","DOIUrl":"https://doi.org/10.23919/AM-FPD.2019.8830622","url":null,"abstract":"Organic methyl ammonium lead halide crystal (e.g. CH3NH3PbI3) can be Perovskite structure with good semiconductor characteristics for solar cells over 24% photoenergy conversion efficiency. The significant point of the perovskite crystal is that it can be prepared by printing methods on substrates (e.g. spin coating, doctor blading, ink jet printing and so on). However, the physical phenomena of perovskite solar cells are still not clear for the higher conversion efficiency and higher stability against circumstances. In order to manage the issues, synchrotron soft X-ray can be a quite strong tool for the analysis. In this conference, the points about how to use synchrotron soft X-ray on perovskite solar cells will be discussed.","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125034579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AM-FPD 2019 Preface AM-FPD 2019前言
{"title":"AM-FPD 2019 Preface","authors":"","doi":"10.23919/am-fpd.2019.8830608","DOIUrl":"https://doi.org/10.23919/am-fpd.2019.8830608","url":null,"abstract":"","PeriodicalId":129222,"journal":{"name":"2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128684841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信