{"title":"Experimental analysis of transient and steady-state heat transfer from an impinging jet to a moving plate","authors":"Celal Kistak, Ali Taskiran, Nevin Celik","doi":"10.1007/s00231-024-03517-5","DOIUrl":"https://doi.org/10.1007/s00231-024-03517-5","url":null,"abstract":"<p>In this study, the transient and steady-state heat transfer caused by an air jet impinging on a heated plate moving back and forth in the horizontal direction is investigated experimentally. The jet flow issuing form nozzle of various geometry (circular, triangle, square) is impinged on rough and smooth surfaces. In addition, Reynolds number (jet velocity), distance between the nozzle and the plate, plate velocity and stroke are considered as independent parameters that could affect the heat transfer.The optimum number of experiments is determined with the help of Taguchi design of experiment method. The transient and steady-state heat transfer are analyzed by means a high-technology thermal camera. Local and average Nusselt numbers representing the heat transfer characteristics are calculated in response to the variable parameters. Comparative graphs and ANOVA test results are presented and evaluated in order to determine the effects of parameters on heat transfer. As a result, it has been seen that Reynolds number (82%) is the most dominant parameter affecting heat transfer. Other parameters are listed as nozzle geometry (7.6%), surface roughness (4.9%), plate velocity (1%), stroke (0.6%) and nozzle-plate distance (0.1%) according to their degree of effect.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"33 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samet Kaya Dursun, Muhammed Taşova, Emircan Dinçer, Mehmet Emin İşbilir
{"title":"Assessment of carrier agents in terms of physicochemical, energy analyses and bioactive constituents of blackberry (Rubus fruticosus L.) powder processed by convective and hybrid drying methods","authors":"Samet Kaya Dursun, Muhammed Taşova, Emircan Dinçer, Mehmet Emin İşbilir","doi":"10.1007/s00231-024-03516-6","DOIUrl":"https://doi.org/10.1007/s00231-024-03516-6","url":null,"abstract":"<p>In this study, the effect of maltodextrin, powdered sugar, and corn starch carrier agents used at different ratios (5% and 10%) in the convective dryer at 65 ºC and hybrid dryer (microwave + convective) at 350 W + 65 ºC to produce blackberry powder was investigated. Drying kinetics, energy analyses, physical, flow properties, and biochemical analyses of blackberry powder production processes were investigated. Drying rates in drying processes varied between 0.0052–0.0477 g moisture/g dry matter minute. Effective moisture diffusion values were determined between 3.36 × 10<sup>–8</sup>-2.57 × 10<sup>–7</sup> m<sup>2</sup>/s. Specific moisture absorption rate and specific energy consumption values were found to vary between 0.0019–0.0034 kg/kWh and 237.15–530.00 kWh/kg, respectively. Tapped density was determined in the range of 1.666–2.765 g/ml, while bulk density was determined in the range of 1.319–1.937 g/ml. The wettability values of blackberry powders were found to vary between 2.00–27.67 s. Drying processes did not preserve the color values of fresh blackberry puree (<i>p</i> < 0.05). In bioactive findings, total phenol content values were 16.756–25.876 µg GAE/g<sup>−1</sup> dw, total monomeric anthocyanin values were 229–1.469 µg cy<sup>−3</sup>-glu/g<sup>−1</sup> dw, total flavonoid values 3.958–5.080 mg KE/kg dw and total antioxidant activity values 406–500 µmol TE/g<sup>−1</sup> dw.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"22 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanaullah Warraich, Nadia Ayub, Fatima Qadeer, Irfan Umar
{"title":"Cattaneo-Christov and Darcy-Forchheimer heat flux on Reiner-Philippoff fluid with Velocity and Thermal Slip Boundary Condition under heat Sink/Source","authors":"Sanaullah Warraich, Nadia Ayub, Fatima Qadeer, Irfan Umar","doi":"10.1007/s00231-024-03512-w","DOIUrl":"https://doi.org/10.1007/s00231-024-03512-w","url":null,"abstract":"<p>Reiner–Philippoff (RP) fluid flow above a heated sheet concluded the model of Cattaneo–Christov heat flux for Darcy-Forchheimer is implemented in this work. The influences of thermal radiation, heat source/sink, velocity, and thermal slip boundary conditions are also deliberated. The transformations are used to convert obtained partial differential equations into a set of ordinary differential equations, and they are solved numerically using the shooting method (RK-4) solver with the help of the computational software MATLAB. The dimensionless temperature and velocity numbers are further developed. More engineering curiosity of local Nusselt and Skin frictions are tabulated, depicted, and interpreted. The study presents graphical and tabular illustrations depicting flow parameters, velocity profiles, and temperature profiles. Key conclusions drawn include, When the inertia coefficient <span>({F}_{r})</span> increases, the velocity field <span>(f^{prime}(eta ))</span> decreases. Analytical calculations are performed for the flow of a Reiner-Philippoff fluid over a shrinking sheet, considering influences such as thermal radiation, velocity slip, and temperature fluctuations. Increased heat absorption correlates with higher Nusselt numbers, whereas temperature generation lowers wall temperatures. The skin friction magnitude gradually increases in the order of dilatant, viscous, and pseudo-plastic fluids, respectively.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"59 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical analysis of hot oil carrying in hydrostatic bearing","authors":"Zhang Yanqin, Jin Shi, Jiang Jinming, Long Dunyao","doi":"10.1007/s00231-024-03514-8","DOIUrl":"https://doi.org/10.1007/s00231-024-03514-8","url":null,"abstract":"<p>Through the analysis of hot oil carrying theory, the problem of oil film heat accumulation in hydrostatic bearing can be revealed, so as to avoid serious lubrication failure caused by heat accumulation. In this paper, the hot oil carrying factor is defined and the mathematical model of the thermal oil carrying characteristics of the oil film is established by taking the beveled double rectangular oil pad hydrostatic bearing as the object, and the hot oil carrying law under different working conditions is obtained by changing the inclination angle of the beveled oil pad at 0.0230°, 0.0250° and 0.0280°, respectively. Theoretical calculations and simulation studies show that within the range of the circumferential inclination of the oil pad with better dynamic pressure effect of the bearing, the inclination has little effect on the oil film hot oil carrying. When the speed of the workbench is lower than 10r/min, no oil film hot oil carrying phenomenon occurs. When the speed is in the range of 10r/min-100r/min, a part of the load will cause the phenomenon of oil film hot oil carrying. And when the speed exceeds 100r/min, the heat accumulation of the oil film is the most serious at this time. There are many reasons for the lubrication failure of hydrostatic bearings, and hot oil carrying is a new research direction, this paper starts from the oil film heating mechanism of beveled oil pads hydrostatic bearings, and describes the phenomenon of hot oil carrying.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"12 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PLC and SCADA based temperature control of heat exchanger system through fractional order PID controller using metaheuristic optimization techniques","authors":"Basant Tomar, Narendra Kumar, Mini Sreejeth","doi":"10.1007/s00231-024-03509-5","DOIUrl":"https://doi.org/10.1007/s00231-024-03509-5","url":null,"abstract":"<p>SCADA systems play an important role in tracking the behaviour of critical process variables and connecting geographically dispersed subsystems at the industrial plant level. This article presents a PLC and SCADA-based control framework to automate and supervise the temperature control processes in the heat exchanger plant. The OMRON (NX1P2-9024DT1) PLC is interfaced with the Wonderware InTouch SCADA system to gather data, create a simulated temperature control prototype and carry out the necessary control operations within the heat exchanger plant. The PLC controls the entire process and programming of PLC is done using Sysmac studio automation software using the ladder programming language. The proposed system controls the temperature of the heat exchanger system through PID and Fractional Order PID (P <span>({text{I}}^{uplambda }{text{D}}^{upmu })</span>) controllers with Integral Anti-windup technique. Various control strategies like Cascade Control, Feedforward Control and Smith Predictor for time delayed process are discussed for controlling the temperature of the process. The performance of both PID and fractional order PID controllers is optimized using adaptive heuristic optimization techniques like Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). In control system design and analysis, the calculated performance indices are used as quantitative measures for evaluating the performance of a system. The combined form of temperature controller with Cascade control, Feedforward control and dead-time compensator is modelled and examined for simulation using MATLAB. Simulation and real-time experimentation analysis of the developed controllers are executed with metaheuristic optimization techniques based on different performance indices like ISE, IAE and ITAE.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical simulation of heat transfer performance and convective vortex evolution in a phase change thermal storage device with dispersed heat sources","authors":"Jianlong Zi, Wei Long, Yunlong Liu, Tingting Lin","doi":"10.1007/s00231-024-03507-7","DOIUrl":"https://doi.org/10.1007/s00231-024-03507-7","url":null,"abstract":"<p>A numerical model based on the enthalpy method for solidification/melting that incorporates liquid-phase convection was established for a shell-and-tube phase-change thermal energy storage device with dispersed heat sources. This model optimized the heat source structure and simulated the phase change process, thermal storage performance, and evolution and effects of convection-induced vortices. To overcome the limitations of melting blind spots in traditional inner-tube heat sources, a dispersed heating approach was introduced to optimize the heat source distribution on the inner and outer tubes without changing the heat exchange area. The optimal heat source model demonstrated superior heat transfer performance, featuring an inner-tube top heat source and three uniformly distributed outer-tube bottom heat sources at a dispersion angle of 60°. It reduced the complete melting time by 70.88% compared to the inner-tube heat source alone and by 51.99% compared to the outer-tube bottom heat source. The dispersed heat sources effectively utilized the natural convection benefits at the upper inner side and enhanced the heat transfer at the lower sections to address the melting blind spots of the central heat source, thereby improving the uniformity of the process. The enhancement in heat transfer within the dispersed heat source model is primarily due to the optimized heat source distribution, which facilitates a more dispersed and uniform vortex evolution during the phase change. This promotes the development of the liquid-solid interface and reduces the mutual interference in convection vortex expansion. Hence, the internal heat transfer rate and thermal storage capacity of the system are improved.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting energy transfer to the workpiece in wire electrical discharge machining using inverse heat transfer technique","authors":"Parth Sathavara, Ajit Kumar Parwani, Paritosh Chaudhuri","doi":"10.1007/s00231-024-03505-9","DOIUrl":"https://doi.org/10.1007/s00231-024-03505-9","url":null,"abstract":"<p>In the context of wire electrical discharge machining (WEDM), determining the fraction of thermal energy transferred to the workpiece (f<sub>c</sub>) is crucial for numerical modelling. This information is necessary to anticipate material removal mechanisms and understand thermal behaviour. In this study, two metaphor-less Rao algorithms are modified to solve the inverse heat conduction problem (IHCP) for the estimation of f<sub>c</sub> during the WEDM process without knowing any prior information on the transient functional form of f<sub>c</sub>. These two algorithms are compared in terms of accuracy and convergence speed. The Rao-1 algorithm stands out with high accuracy and rapid convergence. To evaluate the algorithm applicability in estimating f<sub>c</sub>, the following cases are considered: (1) a numerical investigation with artificial Gaussian error in simulated temperature readings and (2) a real-time experiment on WEDM setup with varying discharge currents. The RMS error between the actual and estimated value of fc with SS-304 material during numerical investigation is found to be 562 W/m which is just 0.008 times of heat source. Real-time experiments reveal that the discharge current is directly proportional to the total energy supplied by the wire as well as f<sub>c</sub>. The f<sub>c</sub> values estimated by the proposed inverse algorithm with various discharge currents fall within the range of 15–18%, aligning with the existing literature. This shows the proposed methodology is accurate and can be extended to incorporate other machining processes.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"2 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical investigation of the heating efficiency of CO2 heat pump water heater system in cold environments","authors":"Jiazhen He, Shuhong Li","doi":"10.1007/s00231-024-03508-6","DOIUrl":"https://doi.org/10.1007/s00231-024-03508-6","url":null,"abstract":"<p>This paper introduces a novel a CO<sub>2</sub> mechanical subcooling heat pump water heater (MSHPWH) to improve the heating performance in low temperatures. By utilizing a mechanical subcooling (MS) cycle, additional heat is supplied to cooling water, improving system efficiency. The study evaluates the heating COP (COP<sub>h</sub>), power consumption and temperature of hot water under various steady-state operating conditions. Results indicate that the COPh of the MSHPWH increases by 44% to 57% compared to conventional HPWH as ambient temperatures range from -25 ℃ to -5 ℃. The MS cycle proves beneficial, with a subcooling range of 4 ℃ to 20 ℃. Adjusting the refrigerant mass flow rate ratio enhances heating output and hot water temperature. Changes in the mass flow rate ratio impact COP<sub>h</sub> and the temperature of hot water concurrently. This research highlights the innovative MS cycle’s significant role in enhancing CO<sub>2</sub> heat pump water heater performance in cold climates, showcasing its potential as an eco-friendly and efficient heating solution.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"19 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of magnetic field on CO2 hydrate phase equilibrium","authors":"Shicai Sun, Junhao Cui, Linlin Gu, Wanxin Tian, Yanmin Li, Yonghao Yin","doi":"10.1007/s00231-024-03506-8","DOIUrl":"https://doi.org/10.1007/s00231-024-03506-8","url":null,"abstract":"<p>The conditions and influencing factors of hydrate formation is significant for hydrate technology. Combining with the existing literatures and the experimental data of this work, the phase equilibrium of CO<sub>2</sub> hydrate in (NaCl/CaCl<sub>2</sub>/MgCl<sub>2</sub>) ionic solutions, pure water-sediment system and (NaCl/CaCl<sub>2</sub>/MgCl<sub>2</sub>) ionic solution-sediment systems under the static magnetic field (0.39 T) was studied. Moreover, the effect mechanism of magnetic field on hydrate phase equilibrium in different systems was analyzed in terms of intermolecular interaction. Under the same pressure, the magnetic field increased the phase equilibrium temperature of CO<sub>2</sub> hydrate by 2.0–2.8 K in the three ionic solutions, which improved the hydrate formation conditions. This is mainly due to that the magnetic effect increases water activity and weakens the ionic hydration shells, thus promotes hydrate formation. In addition, compared with the ionic solution systems without magnetic field, the magnetic field increased the hydrate phase equilibrium temperature by 0.1–2.5 K in the ionic solution-sediment systems. However, the degree of temperature increase is less than that in the magnetic field-ionic solution systems, which is because the magnetic field enhances the binding between ions and the sediment particle in sediment-bearing systems. Compared with the magnetic field-ionic solution systems, the water activity in the magnetic field-ionic solution-sediment systems is lower, which makes hydrate formation more difficult. Moreover, with the movement of cations and anions in magnetic field, the crystals may be formed due to ion collisions, enhance the capillary action in ionic solution-sediment systems, and then hinder the hydrate formation. Therefore, the sediments can weaken the magnetic field promotion to hydrate formation.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical and experimental analysis of the sinusoidal heat flux source of heat transfer in laminar flow in a tube for single phase flow","authors":"S. Solnař","doi":"10.1007/s00231-024-03501-z","DOIUrl":"https://doi.org/10.1007/s00231-024-03501-z","url":null,"abstract":"<p>This article deals with the application of the temperature oscillation method (TOIRT method) to the laminar flow of water in a pipe. This dynamic and contactless method was derived for the assumption of homogeneous temperature on the fluid side, but this assumption is violated in the case of laminar flow. Numerical simulations were used to discover the fundamental influence of the amount of incident heat flux, which is modulated by the sine function, on the resulting local values of the heat transfer coefficient. The frequency of the transmitted signal, on the other hand, has no effect. The experimental measurement confirmed the numerical results even with a deviation of 25%, which is still a good result due to the sensitivity of the experimental method in this area.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"49 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}