{"title":"Reassessment of a bond correction method for in situ ultrasonic interferometry on elastic wave velocity measurement under high pressure and high temperature","authors":"M. Noda, T. Inoue, T. Tsuchiya, Y. Higo","doi":"10.1080/08957959.2022.2112677","DOIUrl":"https://doi.org/10.1080/08957959.2022.2112677","url":null,"abstract":"ABSTRACT\u0000 A new bond correction method for simultaneous elastic wave velocity measurement of in situ synchrotron X-ray technique and ultrasonic interferometry combined with a Kawai type multi-anvil apparatus is developed to measure elastic wave velocity precisely. The new method was validated using data from the literature and new elastic constant data of gold obtained under high pressure and high-temperature conditions. Elastic wave velocities corrected using the new method show lower values than those obtained without bond correction and using the conventional method, which show good agreement with datasets by in situ Brillouin scattering measurement and ab initio calculation. When the sample length is 1 mm under ambient conditions, the corrected V P and V S became 3.7% and 1.6% lower, respectively, than values obtained without bond correction under 12 GPa and 900 K. Results show that correcting the bond effect is extremely important, especially when the sample length is less than 1 mm.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"278 - 293"},"PeriodicalIF":2.0,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45525289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a hybrid piston cylinder cell for quasielastic neutron scattering experiments up to 1 GPa","authors":"T. Hattori, S. Ohira-Kawamura, T. Kawasaki","doi":"10.1080/08957959.2022.2068954","DOIUrl":"https://doi.org/10.1080/08957959.2022.2068954","url":null,"abstract":"ABSTRACT\u0000 We have developed a hybrid piston cylinder cell for quasielastic neutron scattering (QENS) experiments up to about 1 GPa. It consists of a fretted cylinder made of the high tensile steel (SNCM439) liner and the Al alloy (NA700) jacket. Performance tests revealed that the cell can withstand a pressure of 0.8 GPa without irreversible damage and has 4.4 times larger neutron transmission at 3.14 meV (5.10 Å in wavelength) than that of a conventional CuBe monobloc cylinder. Combined with the sample assembly devised for suppressing multiple scattering, high quality QENS spectra of water were obtained up to 0.8 GPa. This study illustrates the efficacy of the hybrid cylinders not only for increasing maximum available pressure but also manipulating the available pressure and the signal intensity, depending on the purpose of the experiments.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"226 - 235"},"PeriodicalIF":2.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41946061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Aouadhi, Mayasar I. Al-zaban, Albandary Nasser Alsaloom, A. Maaroufi
{"title":"Review: inactivation of very heat-resistant spores of Bacilus sporothermodurans by high pressure treatment combined with others treatments","authors":"C. Aouadhi, Mayasar I. Al-zaban, Albandary Nasser Alsaloom, A. Maaroufi","doi":"10.1080/08957959.2022.2079978","DOIUrl":"https://doi.org/10.1080/08957959.2022.2079978","url":null,"abstract":"ABSTRACT\u0000 Bacillus sporothermoduras spores are known to be very resistant to ultra heat treatment. It is able to germinate and growth in the final product causing the non-sterility of UHT milk. Indeed, the currently used methods for the preservation of dairy products are often not sufficient for the destruction of all the spores potentially present. Faced with the constraint of altering the organoleptic and nutritional quality of milk by increasing the temperature and/or the duration of the treatment, in order to inactivate the highly heat-resistant spores, it has therefore become essential to develop other processes more effective in completely inactivating these spores without modifying the organoleptic characteristics of the product. The use of non-thermal methods offers an interesting alternative to conventional thermal treatments. They inactivate microorganisms, in particular bacterial spores, while preserving the organoleptic and nutritional qualities of the treated product. As a result, they have received special attention in recent years. Consequently, this review aimed to summarize the related investigation on the inactivation of heat-resistant spores of Bacillus sporothermodurans by non-thermal methods.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"236 - 244"},"PeriodicalIF":2.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44530563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshiaki Ito, O. Ikeda, T. Sakamaki, T. Kuribayashi, A. Suzuki
{"title":"P-V-T equation of state of α-ScOOH.","authors":"Yoshiaki Ito, O. Ikeda, T. Sakamaki, T. Kuribayashi, A. Suzuki","doi":"10.1080/08957959.2022.2089568","DOIUrl":"https://doi.org/10.1080/08957959.2022.2089568","url":null,"abstract":"ABSTRACT\u0000 In this study, an in situ X-ray diffraction study of α-ScOOH, scandium oxyhydroxide with a diaspore-type structure, was conducted at a pressure and temperature of up to 4.12 GPa and 700 K, respectively, to determine the pressure-volume-temperature (P-V-T) equation of state (EoS). Using a least-squares fit of the second-order Birch–Murnaghan EoS to the P-V-T data, the EoS parameters of α-ScOOH were determined as bulk modulus KT 0 = 101(1) GPa, (∂KT /∂T) P = −0.009(5) GPa K−1, and thermal expansion coefficient at zero pressure α = 3.12(6) 10−5 K−1. α-ScOOH exhibits anisotropic compression and thermal expansion behaviors, which are consistent with those of previous studies on diaspore-type oxyhydroxides. α-ScOOH is more compressible than other diaspore-type oxyhydroxides, and the product of the bulk modulus and volume is approximately constant among diaspore-type M3 + OOH (M = Al, Sc, and Fe).","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"200 - 212"},"PeriodicalIF":2.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44551327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress and prospects for cuprate high temperature superconductors under pressure","authors":"Alexander C. Mark, J. Campuzano, R. Hemley","doi":"10.1080/08957959.2022.2059366","DOIUrl":"https://doi.org/10.1080/08957959.2022.2059366","url":null,"abstract":"ABSTRACT Since the discovery of high temperature superconductivity in at an unprecedented of 35 K over 35 years ago, high pressure experiments have played a critical role in bdeveloping cuprate superconductivity. Soon after its discovery, compression experiments on revealed a large / , motivating the study of ‘chemical pressure’ in the material that led to the 90 K Superconductor . Cuprate superconductors discovered subsequently exhibited a range of from 30 K to 140 K, including the commonly studied Bi, Tl, and Hg based families. Pressure has large effects on superconductivity in these materials, including raising in the Hg based cuprates from 140 K to 166 K at 30 GPa. Reviewing past experiments indicate that pressure dopes holes into the planes common to all cuprates. Further detailed high pressure studies of these materials should deepen our understanding of cuprate superconductivity and the possibility of reaching still higher in cuprates.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"137 - 199"},"PeriodicalIF":2.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46392646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Sabeeh Akram, Shumail Sattar, Zhuo-Ning Fan, Qi-jun Liu, Fu-sheng Liu
{"title":"Measurement of shock and re-shock Hugoniot data of liquid nitrogen","authors":"Muhammad Sabeeh Akram, Shumail Sattar, Zhuo-Ning Fan, Qi-jun Liu, Fu-sheng Liu","doi":"10.1080/08957959.2022.2030325","DOIUrl":"https://doi.org/10.1080/08957959.2022.2030325","url":null,"abstract":"ABSTRACT In this work, the equation-of-state data for liquid nitrogen shock compressed to 43 GPa along the principal Hugoniot and reflected-shock data up to 91 GPa were reported. A cryogenic target was used to liquefy the gas that was then further compressed by high-speed impactors. The first- and second-shock states were observed by a high-precision Doppler pin system (DPS). Optical wavefrom of DPS resulted in the first-shock velocity from which other derivative quantities i.e. particle-velocity, specific-volume, internal-energy, and Grüneisen-parameter, were determined. Our results and published equation-of-state data were used to extrapolate the principal Hugoniot. Their comparison showed softening above 27 GPa, attributed to the absorption of thermal energy that dissociates the molecular nitrogen. Our single-shock data provided a good match to available Hugoniot data. The reduced velocity profiles allowed us to detect optical reflectance of the dissociated liquid phase, and the apparent shock-velocity was used to determine the true shock-velocity in dissociation threshold.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"57 - 68"},"PeriodicalIF":2.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45791866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Yamashita, K. Komatsu, T. Ohhara, K. Munakata, T. Irifune, T. Shinmei, K. Sugiyama, T. Kawamata, H. Kagi
{"title":"Improvement of nano-polycrystalline diamond anvil cells with Zr-based bulk metallic glass cylinder for higher pressures: application to Laue-TOF diffractometer","authors":"K. Yamashita, K. Komatsu, T. Ohhara, K. Munakata, T. Irifune, T. Shinmei, K. Sugiyama, T. Kawamata, H. Kagi","doi":"10.1080/08957959.2022.2045982","DOIUrl":"https://doi.org/10.1080/08957959.2022.2045982","url":null,"abstract":"ABSTRACT Single-crystal neutron diffraction provides direct information about crystal structures such as hydrogen positions and magnetic structures. However, in-situ experiments conducted under high pressure entail technical difficulties such as attenuation correction, masking of parasitic diffraction, and limitations of sample volumes and accessible directions. For this study, we improved diamond anvil cells with a tubular frame made of Zr-based bulk metallic glass and nano-polycrystalline diamond anvils for single-crystal neutron diffraction. The thicker tubular frame was confirmed through experimentation as stably generating 4.5 GPa. Its feasibility for neutron diffraction was assessed at the Laue-TOF diffractometer at the BL18 (SENJU) beamline in the MLF J-PARC using time-resolved two-dimensional detectors covering wide solid angles. In addition to ambient-pressure measurements of NH4Cl, diffraction patterns of a high-pressure phase of ice were also collected in-situ. The obtained intensities are of refinable quality sufficient for structure analysis.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"121 - 135"},"PeriodicalIF":2.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41951158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hughes, R. McMaster, J. Proctor, D. Hewak, Takenobu Suzuki, Y. Ohishi
{"title":"High pressure photoluminescence of bismuth-doped yttria-alumina-silica glass","authors":"M. Hughes, R. McMaster, J. Proctor, D. Hewak, Takenobu Suzuki, Y. Ohishi","doi":"10.1080/08957959.2022.2044031","DOIUrl":"https://doi.org/10.1080/08957959.2022.2044031","url":null,"abstract":"ABSTRACT We report the effects of high pressure, up to 10.45 GPa, on the photoluminescence of Bi-doped yttria-alumina-silica glass under 532 nm excitation. We identify three emission bands attributed to Bi3+, Bi+ and a NIR emitting Bi centre, BiNIR. As the pressure is increased up to ∼6 GPa, an irreversible discontinuity in the trend for emission band energies indicates that an irreversible structural modification occurs. This irreversible discontinuity results in the peak energy of emission bands attributed to Bi+ and BiNIR shifting from those typical of Bi-doped oxide glasses to those observed in Bi-doped gallium-lanthanum-sulfide glass. The Bi3+ emission band can be almost eliminated at ∼6 GPa, but its intensity increases rapidly as the pressure is further increased. The ability we report here to irreversibly modify the emission of Bi-doped glass using pressure treatment adds an extra processing technique to researchers looking to optimize the emission from Bi-doped glasses.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"94 - 104"},"PeriodicalIF":2.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44722591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of high hydrostatic pressure treatment with room-temperature ionic liquid 1-ethyl-3-methylimidazolium acetate - dimethyl sulfoxide mixture on lipid extraction from Chlorella vulgaris","authors":"Yuki Kojima, A. Shimizu","doi":"10.1080/08957959.2022.2044032","DOIUrl":"https://doi.org/10.1080/08957959.2022.2044032","url":null,"abstract":"ABSTRACT In this study, Chlorella vulgaris (C. vulgaris) was immersed in a mixture of 1-ethyl-3-methylimidazolium acetate and dimethyl sulfoxide, and treated hydrostatically at 0.1-250 MPa. For the first time, the relationship between the amount of lipids and fatty acids and high hydrostatic pressure was investigated, as well as the relationship between the amount of fatty acids and the morphology of C. vulgaris cells after treatment. We found that the amount of lipids was maximized and the amount of fatty acids extracted was significantly higher following treatment at 50 MPa than at ambient pressure. The purity of the extracted fatty acids (the amount of fatty acids contained in the extracted lipids) was high following treatment at 200 and 250 MPa, and was about double that of the amount of fatty acids obtained using the Bligh & Dyer and Soxhlet extraction methods, which are typically used for lipid extraction.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"105 - 120"},"PeriodicalIF":2.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47530308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High pressure structural phase transitions in Dysprosium to 202 GPa","authors":"Kevin M. Hope, Christopher S. Perreault, Y. Vohra","doi":"10.1080/08957959.2021.2025231","DOIUrl":"https://doi.org/10.1080/08957959.2021.2025231","url":null,"abstract":"ABSTRACT High pressure structural phase transitions in heavy lanthanide metal Dysprosium (Dy) have been studied to 202 GPa (Volume Compression ) in a diamond anvil cell employing copper as an internal x-ray pressure standard. The previously assigned monoclinic (C2/m) phase above 72 GPa has been reexamined and assigned to an orthorhombic phase with sixteen atoms per cell (oF16) based on structural refinements. The equation of state is presented to 202 GPa and indicates a volume change of 2.3% during the structural phase transition from distorted face-centered cubic (hR24) phase to oF16 phase at 72 GPa. The oF16 phase can be regarded as a pseudo-orthorhombic eight-layered structure with (b/c) ratio decreasing from an ideal value of with increasing pressure to 202 GPa. The ultrahigh pressure structural phases of Dy are compared with other members of the lanthanide series.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"42 1","pages":"47 - 56"},"PeriodicalIF":2.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42332917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}