Marie-Laurence Cossette, Donald T Stewart, Aaron B A Shafer
{"title":"Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity.","authors":"Marie-Laurence Cossette, Donald T Stewart, Aaron B A Shafer","doi":"10.1093/gbe/evae225","DOIUrl":"10.1093/gbe/evae225","url":null,"abstract":"<p><p>Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Review on Plant Cytochrome P450 Evolution: Copy Number, Diversity, and Motif Analysis From Chlorophyta to Dicotyledoneae.","authors":"Yuanpeng Fang, Zheng Tai, Keyi Hu, Lingfeng Luo, Sanwei Yang, Mengmeng Liu, Xin Xie","doi":"10.1093/gbe/evae240","DOIUrl":"10.1093/gbe/evae240","url":null,"abstract":"<p><p>Cytochrome P450 enzymes (CYPs) are widely distributed among various plant groups and constitute approximately 1% of the total number of protein-coding genes. Extensive studies suggest that CYPs are involved in nearly all molecular processes that occur in plants. Over the past two decades, the identification of CYP genes has expanded rapidly, with more than 40,000 CYP genes and 819 CYP families being discovered. Copy number variation is a significant evolutionary characteristic of gene families, yet a systematic characterization of the copy evolution patterns in plant CYP gene families has been lacking, resulting in confusion and challenges in understanding CYP functions. To address these concerns, this review provides comprehensive statistics and analyses of the copy number and diversity of almost all plant CYP gene families, focusing on CYP evolution from Chlorophyta to Dicotyledoneae. Additionally, we examined the subfamily characteristics of certain CYP families with restricted copy changes and identified several CYP subfamilies that play pivotal roles in this event. Furthermore, we analyzed the structural conservation of CYPs across different taxa and compiled a comprehensive database to support plant CYP studies. Our analysis revealed differences in the six core conserved motifs of plant CYP proteins among various clans and plant taxa, while demonstrating similar conservation patterns for the ERR (glutamic acid-arginine-arginine) triad motifs. These findings will significantly facilitate the understanding of plant CYP gene evolution and metabolic diversity and serve as a valuable reference for researchers studying CYP enzymes.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colin M Brand, Shuzhen Kuang, Erin N Gilbertson, Evonne McArthur, Katherine S Pollard, Timothy H Webster, John A Capra
{"title":"Sequence-Based Machine Learning Reveals 3D Genome Differences between Bonobos and Chimpanzees.","authors":"Colin M Brand, Shuzhen Kuang, Erin N Gilbertson, Evonne McArthur, Katherine S Pollard, Timothy H Webster, John A Capra","doi":"10.1093/gbe/evae210","DOIUrl":"10.1093/gbe/evae210","url":null,"abstract":"<p><p>The 3D structure of the genome is an important mediator of gene expression. As phenotypic divergence is largely driven by gene regulatory variation, comparing genome 3D contacts across species can further understanding of the molecular basis of species differences. However, while experimental data on genome 3D contacts in humans are increasingly abundant, only a handful of 3D genome contact maps exist for other species. Here, we demonstrate that human experimental data can be used to close this data gap. We apply a machine learning model that predicts 3D genome contacts from DNA sequence to the genomes from 56 bonobos and chimpanzees and identify species-specific patterns of genome folding. We estimated 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows, of which ∼17% were substantially divergent in predicted genome contacts. Bonobos and chimpanzees diverged at 89 windows, overlapping genes associated with multiple traits implicated in Pan phenotypic divergence. We discovered 51 bonobo-specific variants that individually produce the observed bonobo contact pattern in bonobo-chimpanzee divergent windows. Our results demonstrate that machine learning methods can leverage human data to fill in data gaps across species, offering the first look at population-level 3D genome variation in nonhuman primates. We also identify loci where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prashastha Mishra, Tania S Barrera, Karl Grieshop, Aneil F Agrawal
{"title":"Cis-regulatory Variation in Relation to Sex and Sexual Dimorphism in Drosophila melanogaster.","authors":"Prashastha Mishra, Tania S Barrera, Karl Grieshop, Aneil F Agrawal","doi":"10.1093/gbe/evae234","DOIUrl":"10.1093/gbe/evae234","url":null,"abstract":"<p><p>Much of sexual dimorphism is likely due to sex-biased gene expression, which results from differential regulation of a genome that is largely shared between males and females. Here, we use allele-specific expression to explore cis-regulatory variation in Drosophila melanogaster in relation to sex. We develop a Bayesian framework to infer the transcriptome-wide joint distribution of cis-regulatory effects across the sexes. We also examine patterns of cis-regulatory variation with respect to two other levels of variation in sexual dimorphism: (i) across genes that vary in their degree of sex-biased expression and (ii) among tissues that vary in their degree of dimorphism (e.g. relatively low dimorphism in heads vs. high dimorphism in gonads). We uncover evidence of widespread cis-regulatory variation in all tissues examined, with female-biased genes being especially enriched for this variation. A sizeable proportion of cis-regulatory variation is inferred to have sex-specific effects, with sex-dependent cis effects being much more frequent in gonads than in heads. Finally, we find some genes where 1 allele contributes to more than 50% of a gene's expression in heterozygous males but <50% of its expression in heterozygous females. Such variants could provide a mechanism for sex-specific dominance reversals, a phenomenon important for sexually antagonistic balancing selection. However, tissue differences in allelic imbalance are approximately as frequent as sex differences, perhaps suggesting that sexual conflict may not be particularly unique in shaping patterns of expression variation.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbiome Geographic Population Structure (mGPS) Detects Fine-Scale Geography.","authors":"Yali Zhang, Leo McCarthy, Emil Ruff, Eran Elhaik","doi":"10.1093/gbe/evae209","DOIUrl":"10.1093/gbe/evae209","url":null,"abstract":"<p><p>Over the past decade, sequencing data generated by large microbiome projects showed that taxa exhibit patchy geographical distribution, raising questions about the geospatial dynamics that shape natural microbiomes and the spread of antimicrobial resistance genes. Answering these questions requires distinguishing between local and nonlocal microorganisms and identifying the source sites for the latter. Predicting the source sites and migration routes of microbiota has been envisioned for decades but was hampered by the lack of data, tools, and understanding of the processes governing biodiversity. State-of-the-art biogeographical tools suffer from low resolution and cannot predict biogeographical patterns at a scale relevant to ecological, medical, or epidemiological applications. Analyzing urban, soil, and marine microorganisms, we found that some taxa exhibit regional-specific composition and abundance, suggesting they can be used as biogeographical biomarkers. We developed the microbiome geographic population structure, a machine learning-based tool that utilizes microbial relative sequence abundances to yield a fine-scale source site for microorganisms. Microbiome geographic population structure predicted the source city for 92% of the samples and the within-city source for 82% of the samples, though they were often only a few hundred meters apart. Microbiome geographic population structure also predicted soil and marine sampling sites for 86% and 74% of the samples, respectively. We demonstrated that microbiome geographic population structure differentiated local from nonlocal microorganisms and used it to trace the global spread of antimicrobial resistance genes. Microbiome geographic population structure's ability to localize samples to their water body, country, city, and transit stations opens new possibilities in tracing microbiomes and has applications in forensics, medicine, and epidemiology.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iris Liesbeth Ruesink-Bueno, Anna Drews, Emily Amelia O'Connor, Helena Westerdahl
{"title":"Expansion of MHC-IIB Has Constrained the Evolution of MHC-IIA in Passerines.","authors":"Iris Liesbeth Ruesink-Bueno, Anna Drews, Emily Amelia O'Connor, Helena Westerdahl","doi":"10.1093/gbe/evae236","DOIUrl":"10.1093/gbe/evae236","url":null,"abstract":"<p><p>The major histocompatibility complex (MHC) is central in adaptive immunity, with the highly polymorphic MHC genes encoding antigen-presenting molecules. Two MHC class II (MHC-II) loci, DA1 and DA2, predate the radiation of extant birds and persist throughout much of the avian phylogeny. Within each locus, the MHC-II molecules are encoded by A-genes (DAA) and B-genes (DAB), which are arranged in A-B dyads. However, in passerines (order Passeriformes), the DA2 locus has been lost, and the ancestral A-B dyad at the DA1 locus has been replaced by a putatively single A-gene (DAA1) and an array of highly polymorphic B-genes (DAB1). In this study, we genotyped the DAA1 gene of 15 passerine species and confirmed that passerines possess just one copy of DAA1. We then compared selection patterns in DAA1 between passerines and nonpasserines and found that exon 2, which encodes the antigen-presenting domain, has been subject to weaker positive selection and stronger negative selection in passerines compared with nonpasserines. Additional comparisons showed that the patterns of selection in the passerine DAA1 gene are unlikely to be related to the loss of the DA2 locus. Instead, our findings suggest that the expansion of DAB1 (MHC-IIB) has imposed an evolutionary constraint on the passerine DAA1 (MHC-IIA) gene. We speculate that this constraint may be the result of each DAA1 chain forming heterodimers with many different DAB1 chains.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie H Chen, Ashley Jones, Patricia Lu-Irving, Jia-Yee S Yap, Marlien van der Merwe, Jason G Bragg, Richard J Edwards
{"title":"Chromosome-Level Genome Assembly of the Australian Rainforest Tree Rhodamnia argentea (Malletwood).","authors":"Stephanie H Chen, Ashley Jones, Patricia Lu-Irving, Jia-Yee S Yap, Marlien van der Merwe, Jason G Bragg, Richard J Edwards","doi":"10.1093/gbe/evae238","DOIUrl":"10.1093/gbe/evae238","url":null,"abstract":"<p><p>Myrtaceae are a large family of woody plants, including hundreds that are currently under threat from the global spread of a fungal pathogen, Austropuccinia psidii (G. Winter) Beenken, which causes myrtle rust. A reference genome for the Australian native rainforest tree Rhodamnia argentea Benth. (malletwood) was assembled from Oxford Nanopore Technologies long-reads, 10x Genomics Chromium linked-reads, and Hi-C data (N50 = 32.3 Mb and BUSCO completeness 98.0%) with 99.0% of the 347 Mb assembly anchored to 11 chromosomes (2n = 22). The R. argentea genome will inform conservation efforts for Myrtaceae species threatened by myrtle rust, against which it shows variable resistance. We observed contamination in the sequencing data, and further investigation revealed an arthropod source. This study emphasizes the importance of checking sequencing data for contamination, especially when working with nonmodel organisms. It also enhances our understanding of a tree that faces conservation challenges, contributing to broader biodiversity initiatives.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana.","authors":"Wenbo Xu, Michael Thieme, Anne C Roulin","doi":"10.1093/gbe/evae242","DOIUrl":"10.1093/gbe/evae242","url":null,"abstract":"<p><p>Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural Diversity and Distribution of Nuclear Matrix Constituent Protein Class Nuclear Lamina Proteins in Streptophytic Algae.","authors":"Brendan S Kosztyo, Eric J Richards","doi":"10.1093/gbe/evae244","DOIUrl":"10.1093/gbe/evae244","url":null,"abstract":"<p><p>Nuclear matrix constituent proteins in plants function like animal lamins, providing the structural foundation of the nuclear lamina and regulating nuclear organization and morphology. Although they are well characterized in angiosperms, the presence and structure of nuclear matrix constituent proteins in more distantly related species, such as streptophytic algae, are relatively unknown. The rapid evolution of nuclear matrix constituent proteins throughout the plant lineage has caused a divergence in protein sequence that makes similarity-based searches less effective. Structural features are more likely to be conserved compared to primary amino acid sequence; therefore, we developed a filtration protocol to search for diverged nuclear matrix constituent proteins based on four physical characteristics: intrinsically disordered content, isoelectric point, number of amino acids, and the presence of a central coiled-coil domain. By setting parameters to recognize the properties of bona fide nuclear matrix constituent protein proteins in angiosperms, we filtered eight complete proteomes from streptophytic algae species and identified strong nuclear matrix constituent protein candidates in six taxa in the Classes Zygnematophyceae, Charophyceae, and Klebsormidiophyceae. Through analysis of these proteins, we observed structural variance in domain size between nuclear matrix constituent proteins in algae and land plants, as well as a single block of amino acid conservation. Our analysis indicates that nuclear matrix constituent proteins are absent in the Mesostigmatophyceae. The presence versus absence of nuclear matrix constituent protein proteins does not correlate with the distribution of different forms of mitosis (e.g. closed/semi-closed/open) but does correspond to the transition from unicellularity to multicellularity in the streptophytic algae, suggesting that a nuclear matrix constituent protein-based nucleoskeleton plays important roles in supporting cell-to-cell interactions.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gemma I Martínez-Redondo, Carlos Vargas-Chávez, Klara Eleftheriadi, Lisandra Benítez-Álvarez, Marçal Vázquez-Valls, Rosa Fernández
{"title":"MATEdb2, a Collection of High-Quality Metazoan Proteomes across the Animal Tree of Life to Speed Up Phylogenomic Studies.","authors":"Gemma I Martínez-Redondo, Carlos Vargas-Chávez, Klara Eleftheriadi, Lisandra Benítez-Álvarez, Marçal Vázquez-Valls, Rosa Fernández","doi":"10.1093/gbe/evae235","DOIUrl":"10.1093/gbe/evae235","url":null,"abstract":"<p><p>Recent advances in high-throughput sequencing have exponentially increased the number of genomic data available for animals (Metazoa) in the last decades, with high-quality chromosome-level genomes being published almost daily. Nevertheless, generating a new genome is not an easy task due to the high cost of genome sequencing, the high complexity of assembly, and the lack of standardized protocols for genome annotation. The lack of consensus in the annotation and publication of genome files hinders research by making researchers lose time in reformatting the files for their purposes but can also reduce the quality of the genetic repertoire for an evolutionary study. Thus, the use of transcriptomes obtained using the same pipeline as a proxy for the genetic content of species remains a valuable resource that is easier to obtain, cheaper, and more comparable than genomes. In a previous study, we presented the Metazoan Assemblies from Transcriptomic Ensembles database (MATEdb), a repository of high-quality transcriptomic and genomic data for the two most diverse animal phyla, Arthropoda and Mollusca. Here, we present the newest version of MATEdb (MATEdb2) that overcomes some of the previous limitations of our database: (i) we include data from all animal phyla where public data are available, and (ii) we provide gene annotations extracted from the original GFF genome files using the same pipeline. In total, we provide proteomes inferred from high-quality transcriptomic or genomic data for almost 1,000 animal species, including the longest isoforms, all isoforms, and functional annotation based on sequence homology and protein language models, as well as the embedding representations of the sequences. We believe this new version of MATEdb will accelerate research on animal phylogenomics while saving thousands of hours of computational work in a plea for open, greener, and collaborative science.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}