Genes to Cells最新文献

筛选
英文 中文
Roles of ZEB1 and ZEB2 in E-cadherin expression and cell aggressiveness in head and neck cancer ZEB1和ZEB2在头颈癌E-粘连蛋白表达和细胞侵袭性中的作用
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-10-03 DOI: 10.1111/gtc.13167
Arisa Kinouchi, Takahiro Jubashi, Rikito Tatsuno, Jiro Ichikawa, Kaname Sakamoto, Daiju Sakurai, Tomonori Kawasaki, Hiroki Ishii, Keiji Miyazawa, Masao Saitoh
{"title":"Roles of ZEB1 and ZEB2 in E-cadherin expression and cell aggressiveness in head and neck cancer","authors":"Arisa Kinouchi,&nbsp;Takahiro Jubashi,&nbsp;Rikito Tatsuno,&nbsp;Jiro Ichikawa,&nbsp;Kaname Sakamoto,&nbsp;Daiju Sakurai,&nbsp;Tomonori Kawasaki,&nbsp;Hiroki Ishii,&nbsp;Keiji Miyazawa,&nbsp;Masao Saitoh","doi":"10.1111/gtc.13167","DOIUrl":"10.1111/gtc.13167","url":null,"abstract":"<p>Zinc finger E-box binding homeobox 1 (ZEB1) has been identified as a key factor in cancer cell differentiation and metastasis, and has been well studied in the field of cancer cell biology. ZEB2 has a highly similar conformation to ZEB1, but its role in head and neck squamous cell carcinoma (HNSCC) cells is not fully understood. Here, we separately overexpressed ZEB1 and ZEB2 in C57BL/6 mouse oral cancer (MOC) cells and investigated their cellular characteristics, including E-cadherin levels, motile properties, chemoresistance, and metastatic ability in immunocompetent mice. Both ZEB1 and ZEB2 overexpression reduced epithelial traits and converted cells to an aggressive phenotype. Surprisingly, ZEB1 overexpression increased the endogenous level of ZEB2 in MOC cells, and vice versa. The molecular mechanisms underlying these findings remain unclear. However, the in vitro anchorage-independent growth of MOC cells overexpressing ZEB2 was considerably greater than that of MOC cells overexpressing ZEB1. These findings suggest that ZEB2, like ZEB1, has the ability to induce the differentiation of cancer cells into those with highly aggressive traits.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 12","pages":"1131-1143"},"PeriodicalIF":1.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation 通过昼夜节律基因上调降解E2F1和c-Myc,定期运动可抑制脂肪变性相关肝癌的发展。
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-10-02 DOI: 10.1111/gtc.13161
Vu Thuong Huyen, Kanae Echizen, Ryota Yamagishi, Miho Kumagai, Yoshiki Nonaka, Takahiro Kodama, Tatsuya Ando, Megumu Yano, Naoki Takada, Masaki Takasugi, Fumitaka Kamachi, Naoko Ohtani
{"title":"Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation","authors":"Vu Thuong Huyen,&nbsp;Kanae Echizen,&nbsp;Ryota Yamagishi,&nbsp;Miho Kumagai,&nbsp;Yoshiki Nonaka,&nbsp;Takahiro Kodama,&nbsp;Tatsuya Ando,&nbsp;Megumu Yano,&nbsp;Naoki Takada,&nbsp;Masaki Takasugi,&nbsp;Fumitaka Kamachi,&nbsp;Naoko Ohtani","doi":"10.1111/gtc.13161","DOIUrl":"10.1111/gtc.13161","url":null,"abstract":"<p>Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCF<sup>FBXL3</sup>) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1012-1025"},"PeriodicalIF":1.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for putative gene regulatory motifs in CAHS3, linked to anhydrobiosis in a tardigrade Ramazzottius varieornatus, in vivo and in silico 寻找 CAHS3 中的推定基因调控基团,在体内和硅学中研究与迟行龙 Ramazzottius varieornatus 的无水生物症有关的基因调控基团。
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-30 DOI: 10.1111/gtc.13168
Sora Ishikawa, Sae Tanaka, Kazuharu Arakawa
{"title":"Search for putative gene regulatory motifs in CAHS3, linked to anhydrobiosis in a tardigrade Ramazzottius varieornatus, in vivo and in silico","authors":"Sora Ishikawa,&nbsp;Sae Tanaka,&nbsp;Kazuharu Arakawa","doi":"10.1111/gtc.13168","DOIUrl":"10.1111/gtc.13168","url":null,"abstract":"<p>Tardigrades possess the ability to enter an almost completely dehydrated state, anhydrobiosis. The CAHS (cytosolic abundant heat-soluble) protein family has been identified as one of the anhydrobiosis-related proteins. In particular, CAHS3 protein from an anhydrobiotic tardigrade, <i>Ramazzottius varieornatus</i>, shows heat-solubility and reversible condensation and is one of the most highly expressed among the CAHS paralogs. A recently developed tardigrade-specific vector showed tissue-specific expression of RvCAHS3 most pronounced in the epidermis in vivo, contrary to the idea that anhydrobiotic genes are uniformly expressed in all tardigrade cells. In this study, we investigated the regulation of RvCAHS3 gene expression through in vivo expression experiments using tardigrade vectors with a series of truncated upstream regions coupled with in silico analysis to identify the anhydrobiosis-related genes that are expressed under the same regulatory system as RvCAHS3. As a result, the 300–350 bp region upstream of RvCAHS3 is critical for regulating gene expression in tardigrade vector experiments, and three motifs conserved between two species of anhydrobiotic tardigrades were identified within a 500 bp region directly upstream of RvCAHS3 start codon. These motifs, which have also been identified upstream of other CAHS genes, could be associated with the regulatory system of anhydrobiosis-related genes in tardigrades.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 12","pages":"1144-1153"},"PeriodicalIF":1.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-analysis of gonadal transcriptome provides novel insights into sex change mechanism across protogynous fishes 性腺转录组的元分析为了解原雌性鱼类的性别变化机制提供了新的视角。
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-29 DOI: 10.1111/gtc.13166
Ryo Nozu, Mitsutaka Kadota, Masaru Nakamura, Shigehiro Kuraku, Hidemasa Bono
{"title":"Meta-analysis of gonadal transcriptome provides novel insights into sex change mechanism across protogynous fishes","authors":"Ryo Nozu,&nbsp;Mitsutaka Kadota,&nbsp;Masaru Nakamura,&nbsp;Shigehiro Kuraku,&nbsp;Hidemasa Bono","doi":"10.1111/gtc.13166","DOIUrl":"10.1111/gtc.13166","url":null,"abstract":"<p>Protogyny, being capable of changing from female to male during their lifetime, is prevalent in 20 families of teleosts but is believed to have evolved within specific evolutionary lineages. Therefore, shared regulatory factors governing the sex change process are expected to be conserved across protogynous fishes. However, a comprehensive understanding of this mechanism remains elusive. To identify these factors, we conducted a meta-analysis using gonadal transcriptome data from seven species. We curated data pairs of ovarian tissue and transitional gonad, and employed ratios of expression level as a unified criterion for differential expression, enabling a meta-analysis across species. Our approach revealed that classical sex change-related genes exhibited differential expression levels between the ovary and transitional gonads, consistent with previous reports. These results validate our methodology's robustness. Additionally, we identified novel genes not previously linked to gonadal sex change in fish. Notably, changes in the expression levels of acetoacetyl-CoA synthetase and apolipoprotein Eb, which are involved in cholesterol synthesis and transport, respectively, suggest that the levels of cholesterol, a precursor of steroid hormones crucial for sex change, are decreased upon sex change onset in the gonads. This implies a potential universal influence of cholesterol dynamics on gonadal transformation in protogyny.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1052-1068"},"PeriodicalIF":1.3,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The repertoire of G-protein-coupled receptor variations in the Japanese population 54KJPN 日本人口中 G 蛋白偶联受体变异的剧目 54KJPN.
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-23 DOI: 10.1111/gtc.13164
Tatsuya Ikuta, Riko Suzuki, Asuka Inoue
{"title":"The repertoire of G-protein-coupled receptor variations in the Japanese population 54KJPN","authors":"Tatsuya Ikuta,&nbsp;Riko Suzuki,&nbsp;Asuka Inoue","doi":"10.1111/gtc.13164","DOIUrl":"10.1111/gtc.13164","url":null,"abstract":"<p>G-protein-coupled receptors (GPCRs) are the largest superfamily in the human genome and the major targets for the market drugs. Recent massive genomics studies revealed numerous natural variations in the general population. 54KJPN is the most extensive Japanese population genomics study, curating the whole genome sequences from about 54,000 individuals. Here, by analyzing 390 non-olfactory GPCR genes in the 54KJPN dataset, we annotated 25,443 missense single-nucleotide variations. Among them, we found 120 major variations that appear with an allele frequency greater than 0.5, including variations that occurred on posttranslational modification sites. Structural alignment of GPCRs using the generic numbering system in the GPCRdb reveals enrichment of alterations in the conserved arginine residue within the DRY motif, which contributes to downstream G-protein signaling. A comparison with the worldwide 1000 Genomes Project (1KGP) dataset found 23 variations that were present exclusively in the 54KJPN dataset. This study will be the basis for future pharmacogenomics studies for the Japanese population.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1026-1036"},"PeriodicalIF":1.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elimination of physiological senescent cutaneous cells in a novel p16-dependent senolytic mouse model impacts lipid metabolism in skin aging 在新型 p16 依赖性衰老小鼠模型中消除生理性衰老皮肤细胞会影响皮肤老化过程中的脂质代谢
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-16 DOI: 10.1111/gtc.13163
Yuma Sugiyama, Yoichiro Kawabe, Tanenobu Harada, Yu Aoki, Keiko Tsuji, Daijiro Sugiyama, Mitsuo Maruyama
{"title":"Elimination of physiological senescent cutaneous cells in a novel p16-dependent senolytic mouse model impacts lipid metabolism in skin aging","authors":"Yuma Sugiyama,&nbsp;Yoichiro Kawabe,&nbsp;Tanenobu Harada,&nbsp;Yu Aoki,&nbsp;Keiko Tsuji,&nbsp;Daijiro Sugiyama,&nbsp;Mitsuo Maruyama","doi":"10.1111/gtc.13163","DOIUrl":"10.1111/gtc.13163","url":null,"abstract":"<p>The evidence of the correlation between cellular senescence and aging has increased in research with animal models. These models have been intentionally generated to target and regulate cellular senescent cells with the promoter activity of <i>p16</i><sup><i>Ink4a</i></sup> or <i>p19</i><sup><i>Arf</i></sup>, genes that are highly expressed in aging cells. However, the senolytic efficiency in various organs and cells from these models represents unexpected variation and diversity in some cases. We have generated a novel knock-in model, <i>p16</i>tdT-hDTR mice, which possess tdTomato and human diphtheria toxin receptor (hDTR) downstream of <i>Cdkn2a</i>, an endogenous <i>p16</i><sup><i>Ink4a</i></sup> gene. We successfully demonstrated that p16-derived tdTomato and hDTR expressions are observed in these mouse embryo fibroblasts and following treatment with diphtheria toxin (DT) eliminates those cells. Furthermore, we demonstrated the efficacy of eliminating p16-positive cells in vivo, and also observed a tendency to decrease their cutaneous SA-β-gal activity after subcutaneous DT injection into <i>p16</i>tdT-hDTR mice. In particular, comprehensive gene expression analysis in skin revealed that upregulated genes related to lipid metabolisms with aging exhibited remarkable expressions under the senolysis. These results clearly unveiled p16-positive senescent cells contribute to age-related changes in skin.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1085-1094"},"PeriodicalIF":1.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice 小鼠摄入高脂饮食后,内脏白色脂肪组织中 BDNF 的表达加速。
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-15 DOI: 10.1111/gtc.13162
Kurumi Sakata, Mamoru Fukuchi
{"title":"Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice","authors":"Kurumi Sakata,&nbsp;Mamoru Fukuchi","doi":"10.1111/gtc.13162","DOIUrl":"10.1111/gtc.13162","url":null,"abstract":"<p>Brain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, <i>Bdnf</i> mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding. This upregulation of <i>Bdnf</i> mRNA was correlated with significant induction of hypoxia-inducible factor 1α (<i>Hif1α</i>) and platelet-derived growth factor subunit B (<i>Pdgfb</i>) mRNA in eWAT following 8 weeks of HFD feeding. Furthermore, the increased expression of the M1 macrophage markers was strongly correlated with the elevation of <i>Bdnf</i> mRNA in the eWAT. Notably, 8 weeks of HFD feeding significantly elevated <i>Tnfα</i> mRNA expression in eWAT, while no such induction was observed in inguinal WAT (iWAT). In contrast, the expression of <i>Adipoq</i> (adiponectin), implicated in improved insulin sensitivity and anti-inflammatory effects, was significantly upregulated in iWAT, but not in eWAT. Thus, our study may show the role of BDNF in eWAT in obesity models, potentially contributing to the pathological state of visceral adipose tissues.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1077-1084"},"PeriodicalIF":1.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neonatal Fc receptor is a functional receptor for classical human astrovirus 新生儿 Fc 受体是经典人类星状病毒的功能性受体
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-12 DOI: 10.1111/gtc.13160
Kei Haga, Takashi Tokui, Kana Miyamoto, Reiko Takai-Todaka, Shiori Kudo, Azusa Ishikawa, Ryoka Ishiyama, Akiko Kato, Masaru Yokoyama, Kazuhiko Katayama, Akira Nakanishi
{"title":"Neonatal Fc receptor is a functional receptor for classical human astrovirus","authors":"Kei Haga,&nbsp;Takashi Tokui,&nbsp;Kana Miyamoto,&nbsp;Reiko Takai-Todaka,&nbsp;Shiori Kudo,&nbsp;Azusa Ishikawa,&nbsp;Ryoka Ishiyama,&nbsp;Akiko Kato,&nbsp;Masaru Yokoyama,&nbsp;Kazuhiko Katayama,&nbsp;Akira Nakanishi","doi":"10.1111/gtc.13160","DOIUrl":"10.1111/gtc.13160","url":null,"abstract":"<p>Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (<i>Mamastrovirus</i> genotype 1). Deletion of <i>FCGRT</i> or <i>B2M</i>, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"983-1001"},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capsaicin modulates TRPV1, induces β-defensin expression, and regulates NF-κB in oral senescent cells and a murine model 辣椒素在口腔衰老细胞和小鼠模型中调节 TRPV1、诱导β-防御素表达并调节 NF-κB
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-12 DOI: 10.1111/gtc.13158
Yoriko Ikuyo, Haruna Yokoi, Jingshu Wang, Masae Furukawa, Resmi Raju, Mitsuyoshi Yamada, Yu Aoki, Kenji Matsushita
{"title":"Capsaicin modulates TRPV1, induces β-defensin expression, and regulates NF-κB in oral senescent cells and a murine model","authors":"Yoriko Ikuyo,&nbsp;Haruna Yokoi,&nbsp;Jingshu Wang,&nbsp;Masae Furukawa,&nbsp;Resmi Raju,&nbsp;Mitsuyoshi Yamada,&nbsp;Yu Aoki,&nbsp;Kenji Matsushita","doi":"10.1111/gtc.13158","DOIUrl":"10.1111/gtc.13158","url":null,"abstract":"<p>Aging is associated with a decline in oral immune function, marked by reduced levels of antimicrobial peptides such as defensins. Capsaicin, a bioactive component found in chili peppers, has been theorized to modulate immune responses through specific receptor pathways. This study examined the effects of aging on oral defensin levels and the potential mitigating role of capsaicin, mediated by the immune response in oral tissues. We conducted a comparative analysis between young and aged mice, with or without capsaicin supplementation, for 3 months. The effect of capsaicin was also studied in vitro in senescence-induced human oral keratinocytes. We found that aging did not reduce defensin levels uniformly but did so in some instances. Capsaicin treatment increased defensin levels in these cases, potentially through transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways in the oral cavity. Capsaicin supplementation may counteract age-related declines in oral defensin levels, enabling the maintenance of oral immune function during aging.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1069-1076"},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle 开发用于实时检测细胞周期中 CDK/PP2A 平衡的发光探针
IF 1.3 4区 生物学
Genes to Cells Pub Date : 2024-09-11 DOI: 10.1111/gtc.13159
Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida
{"title":"Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle","authors":"Hirotsugu Hino,&nbsp;Kaori Takaki,&nbsp;Mika Kobe,&nbsp;Satoru Mochida","doi":"10.1111/gtc.13159","DOIUrl":"10.1111/gtc.13159","url":null,"abstract":"<p>From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (<i>Renilla</i> luciferase-based Ca<sup>2+</sup> probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the <i>Xenopus</i> egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1002-1011"},"PeriodicalIF":1.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信